А1.
Найдём производную данной функции.
Найдём нули производной.
Определим знак производной на каждом промежутке.
- +
--------------------------------------------------------------------> x
Функция возрастает там, где её производная положительна. А значит, она возрастает на промежутке . Из перечня ответов полностью в этот промежуток входит только
.
ответ: 3.
А2.
Найдём производную данной функции.
Найдём нули производной.
По теореме Виета:
Определим знак производной на каждом промежутке.
+ - +
-------------------------------------------
--------------------> x
Функция убывает там, где её производная отрицательна. В нашем случае, на промежутке . Ему соответствует вариант номер 2.
ответ: 2.
А3.
В точках минимума функция из убывания переходит в возрастание. На данном графике 4 такие точки (см. вложение).
ответ: 1.
А4.
Найдём производную данной функции.
Найдём нули производной.
Точки максимума соответствуют точкам смены знака производной с плюса на минус. Проверим это, определив её знак на каждом промежутке:
+ -
--------------------------------------------------------------------> x
Полученные знаки соответствуют изложенному выше условию. Значит, 2 является точкой максимума функции.
ответ: 4.
А5.
Найдём производную.
Найдём нули производной.
У производной нашлось 2 нуля. В то же время, производная равна нулю в точках экстремума графика функции. А значит, функция имеет две точки экстремума.
ответ: 1.
А6.
Точки максимума на графике производной соответствуют точкам смены знака производной с плюса на минус. На нашем графике это происходит в точке с абсциссой 3.
ответ: 2.
А7.
Найдём производную функции.
Найдём нули производной.
У производной нашлось 2 нуля. Найдём её знак на каждом промежутке.
+ - +
-------------------------------------
-------------------> x
Точки минимума соответствуют точкам смены знака производной с минуса на плюс. Такой точке соответствует 2.
ответ: 4.
А8.
На заданном отрезке функция имеет одну точку максимума. Она соответствует значению функции, равному трём.
ответ: 2.
1.Нахождение области определения функции
Определение интервалов, на которых функция существует.
!!! Очень подробно об области определения функций и примеры нахождения области определения тут.
2.Нули функции
Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.
3.Четность, нечетность функции
Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.
4.Промежутки знакопостоянства
Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.
5. Промежутки возрастания и убывания функции.
Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.
6. Выпуклость, вогнутость.
Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.
7. Наклонные асимптоты.
Пример исследования функции и построения графика №1
Исследовать функцию средствами дифференциального исчисления и построить ее график.
Пошаговое объяснение:
2)92:2=46програм
ответ 46 всего программ в салоне