21 грамм краски
Пошаговое объяснение:
Куб состоит из 6 граней. Необходимо просчитать количество свободных граней фигуры для покраски.
Фигура состоит из 5 собранных кубов, где крайних - 3 шт., и средних - 1 шт., центральный - 1 шт.
Для покраски граней куба:
- крайнего 5 граней * 3 = 15 граней;
- среднего 4 грани * 1 = 4 грани;
- центрального 3 грани * 1 = 3 грани.
Всего граней для покраски равно: 15 + 4 + 3 = 21 грани
Из расчета расхода 1 грамм краски на одну грань, получаем расход краски: 21 * 1 = 21 грамм.
3)все 4 функции вида y = kx + b. если b > 0, то прямая соприкасается с осью ординат выше оси абсцисс, а если b < 0, то прямая соприкасается с осью ординат ниже оси абсцисс. значит, графики a и b соответствуют уравнениям 2 и 3, а графики c и d соответствуют уравнениям 1 и 4. определим теперь конкретно какой график к какому уравнению подходит. рассмотрим уравнение, в котором k = 2 y = 2x + 5, причём x = = 2,5. значит, прямая проходит через точку абсцисс 2,5. рассмотрим уравнение, в котором k = 1 y = x - 5, из свойств числового коэффициента b следует, что график проходит через точку ординат -5, а из формулы y = a(x - m)² следует, что точка соприкосновения оси абсцисс и прямой смещена вправо на 5. проведя аналогичные рассуждения с остальными двумя уравнениями и их графиками, придём к выводу, что1) - c2) - a3) - b4) – d