5.27 уравниваем
√2х²-3х+1=√х²-3х+2
подносим всё уравнение ко второй степени, тогда корень пропадает
2х²-3х+1=х²-3х+2
переносим всё в одну сторону с противоположным знаком
2х²-3х+1-х²+3х-2=0
упрощаем
х²-1=0
х²=1
х=±1
это неполное квадратное уравнение, если будет полное типа ах²±bx±c=0, тогда применяем дискриминант или теорему Виета( за условия что а=1). дискриминант должен быть больше или равно нулю!
так делаем с 5.28 по 5.34 включительно
пройдёмся по остальным уравнениям:
из 5.35 включительно по 5.48
5.35 нужно поднести к квадрату всё уравнение
3х+1=√1-х
(3х+1)²=1-х
раскрываем скобки по формуле:
(а±b)²=a²±2ab+b²
9х²+6х+1=1-х
переносим в одну сторону
9х²+6х+1-1+х=0
9х²+7х=0
так же неполное квадратное уравнение только в ином виде
выносим х за скобки
х(9х+7)=0
х=0 или 9х+7=0
9х=-7
х=-7/9
если полное квадратное смотреть указания выше↑
5.40
√8-6х-х²=6+х
далее к квадрату и по схеме
5.46
если это уравнение поднести к квадрату то в левой части х²+8 умножиться на 4 (так как 2²=4) и будет 4х²+32=(2х+1)²
далее так же по схеме
это касательно уравнений с 5.45 по 5.48
2 * x ^ 2 - 5 * x - 7 = 0
Найдем дискриминант квадратного уравнения:
D = b ^ 2 - 4ac = ( - 5 ) ^ 2 - 4 · 2 · ( - 7 ) = 25 + 56 = 81
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = ( 5 - √ 81 ) / ( 2 · 2 ) = ( 5 - 9 ) / 4 = - 4 / 4 = -1
x2 = ( 5 + √ 81 ) / ( 2 · 2 ) = ( 5 + 9 ) / 4 = 14 / 4 = 7 / 2 = 3 . 5
Проверка:
при х = - 1 , тогда
2 * ( - 1 ) ^ 2 - 5 * ( - 1 ) - 7 = 0
2 * 1 + 5 * 1 - 7 = 0
2 + 5 - 7 = 0
7 - 7 = 0
верно
при х = 7 / 2, тогда
2 * ( 7 / 2 ) ^ 2 - 5 * 7 / 2 - 7 = 0
2 * 49 / 4 - 35 / 2 - 7 = 0
( 98 - 70 ) / 4 - 7 = 0
28 / 4 - 7 =0
7 - 7 = 0
верно
ответ: х = - 1
х = 7 / 2
Пошаговое объяснение:
/ это дробь в ответе наверное
2)256-144=112
ответ:112 кг апельсинов осталось на базе