Объем прямой призмы равен V=S*H, где S - площадь основания, а Н - высота призмы. Sпр=2Sосн+S1+S2+S3, Sосн - площадь основания, S1, S2, S3 - площади боковых граней. В прямой призме боковые ребра равны высоте, поскольку перпендикулярны к основанию.Все боковые грани - прямоугольники. Находим Sосн=аh/2. Если призма правильная, то в основании лежит равносторонний треугольник и все просто S1=a*H=S2=S3 Тогда V=ahH/2 S=ah+3aH=a(h+3H) Если призма неправильная, то нужны еще значения. Если треугольник в основании равнобедренный, другие стороны вычислим по теореме Пифагора.
Как известно, аликвотными (единичными) дробями в математике принято называть дроби вида 1/x, т.е. такие дроби, в которых числитель равен единице, а знаменатель - любое натуральное число. Сталкиваясь с задачей разложения аликвотных дробей в виде суммы меньших аликвотных дробей была выведена закономерность, которую можно представить в виде формулы 1/x = 1/(x+1) + 1/x(x+1), с которой поставленная задача решается так:1/2 = 1/(2+1) + 1/2(2+1) = 1/3+1/6;1/4 = 1/(4+1) + 1/4(4+1) = 1/5+1/20;1/6 = 1/(6+1) + 1/6(6+1) = 1/7+1/42;1/8 = 1/(8+1) + 1/8(8+1) = 1/9+1/72;1/10 = 1/(10+1) + 1/10(10+1) = 1/11+1/110.