ответ: 1.
а) 0,872 × 6,3 = 5,4936
б) 1,6 × 7,625 = 12,2
в) 0,045 × 0,1 = 0,0045
г) 30,42 : 7,8 = 3,9
д) 0,702 : 0,065 = 10,8
е) 0,026 : 0,01 = 2,6
2.
(32,4 + 41 + 27,95 + 46,9 + 55,75) : 5 = 204 : 5 = 40,8
3.
296,2 – 2,7 × 6,6 + 6 : 0,15 = 296,2 - 17,82 + 40 = 318,38
4.
3 * 63,2 = 189,6 (км поезд за 3 часа
4 * 76,5 = 306 (км поезд за 4 часа
189,6 + 306 = 495,6 (км) - весь путь поезда
3 + 4 = 7 (ч) - был поезд в пути
495,6 : 7 = 70,8 (км/ч) - средняя скорость поезда
5.
2,9 * 6 = 17,4 - сумма 6 чисел
10,23+17,4 = 27,63 - сумму 9 чисел
27,63 : 9 = 3,07 - среднее арифметическое девяти чисел.
если квадратный трехчлен aх2+bx+c представлен в виде a(х+p)2+q, где p и q — действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена.
покажем на примере как это преобразование делается.
выделим из трехчлена 2x2+12x+14 квадрат двучлена.
вынесем за скобки коэффициент a, т.е. 2:
2
x
2
+
12
x
+
14
=
2
(
x
2
+
6
x
+
7
)
преобразуем выражение в скобках.
для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 32. получим:
2
(
x
2
+
2
⋅
3
⋅
x
+
3
2
−
3
2
+
7
)
=
2
(
(
x
+
3
)
2
−
3
2
+
7
)
=
=
2
(
(
x
+
3
)
2
−
2
)
=
2
(
x
+
3
)
2
−
4
т.о. мы выделили квадрат двучлена из квадратного трехчлена, и показоли, что:
2
x
2
+
12
x
+
14
=
2
(
x
+
3
)
2
−
4
разложение на множители квадратного трехчлена
если квадратный трехчлен aх2+bx+c представлен в виде a(х+n)(x+m), где n и m — действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена.
покажем на примере как это преобразование делается.
разложим квадратный трехчлен 2x2+4x-6 на множители.
вынесем за скобки коэффициент a, т.е. 2:
2
x
2
+
4
x
−
6
=
2
(
x
2
+
2
x
−
3
)
преобразуем выражение в скобках.
для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. получим:
=
2
(
x
2
+
3
⋅
x
−
1
⋅
x
−
1
⋅
3
)
=
2
(
x
(
x
+
3
)
−
1
⋅
(
x
+
3
)
)
=
=
2
(
x
−
1
)
(
x
+
3
)
т.о. мы разложили на множители квадратный трехчлен, и показоли, что:
2
x
2
+
4
x
−
6
=
2
(
x
−
1
)
(
x
+
3
)
заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
т.е. в нашем случае разложить на множители трехчлен 2x2+4x-6 возможно, если квадратное уравнение 2x2+4x-6 =0 имеет корни. в процессе разложения на множители мы установили, что уравнение 2x2+4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство
8, 6549 - самое большое такое число, т.к. в разряде тысячных долей стоит цифра 4. На месте десятитысячных же ставим вообще самую большую цифру 9, чтобы удовлетворить условию задачи.