1) Длина стороны ВС равна √((Xc-Xb)²+(Yc-Yb)²) = √((17-1)²+(2-0)²) =
= √(16²+2²) = √(256+4) = √260 = 2√65 = 16.1245.
Аналогично находим длину стороны АВ = 5, и АС = 13.
2) Площадь S = (1/2)*|(Xb-Xc)*(Yc-Ya)-(Xc-Xa)*(Yb-Ya)| =
= (1/2)*|(1-5)*(2-(-3))-(17-5)*(0-(-3))| = (1/2)*|-4*5-12*3| =(1/2)|-56| = 28.
3) Уравнение стороны ВС:
(X-Xb)/(Xc-Xb) = (Y-Yb)/(Yc-Yb)
(X-1)/(17-1) = (Y-0)/(2-0)
(X-1)/16 = Y/2
X-8Y-1=0 или с коэффициентом: У = (1/8)X - (1/8).
4) Уравнение высоты из вершины А:
(Х-Xa)/(Yc-Yb) = (Y-Ya)/(Xb-Xc)
(X-5)/(2-0) = (Y-(-3))/(1-17)
(X-5)/2 = (Y+3)/-16
8X+Y-37=0 или Y = -8X+37.
Аналогично находим уравнения высоты из вершины В:
12Х+5У-12=0,
и из вершины С:
4Х-3У-62=0.
5) Высота из вершина А равна Ha = 2S/BC = 2*28 / 2√65 = 3,473.
Из вершины В: Нв = 2*28 / 13 = 4,308.
Из вершины С: Нс = 2*28 / 5 = 11,2.
6) Косинус угла В: cosB = (AB²+BC²-AC²) / (2*AB*BC) =
= (5²+(2√65)²-13²) / (2*5*2√65) = 116/20√65 =
0.7194
Угол В = 0.76786 радиан =
43.9949 градуса.
Пусть детский билет стоит — х (икс) рублей, а взрослый билет — у (игрек) рублей. Тогда первая семья заплатила: х · 2 + у = 470 (руб.), а вторая семья: х · 3 + у · 2 = 825 (руб.). Выразим из первого уравнения значение игрека (у = 470 – х · 2) и подставим его во второе уравнение:
х · 3 + (470 – х · 2) · 2 = 825;
х · 3 + 940 – х · 4 = 825;
- х = 825 – 940;
- х = - 115;
х = 115 (руб.) — цена детского билета.
Найдем цену взрослого билета: у = 470 – х · 2 = 470 – 115 · 2 = 240 (руб.).
ответ: один детский билет стоит 115 рублей, а взрослый — 240 рублей.
Пошаговое объяснение:
9001=9001
(240+6):6=33+8
41=41
(2100+60+3):3=710+10+1
721=721
(2100+270+3):3=780+10+1
791=791