Пошаговое объяснение:
Подставляем значения всех возможных выражений в уравнения.
1366:
1)x+y-2=0
a) (-1;3)
-1+3-2=-3+3=0
б) (-8;6)
-8+6-2=-10+6=-4
Не подходит.
ответ (-1;3)
2)2x+y-4=0
a) (0,5;3)
2*0,5+3-4=4-4=0
б) (-3;2)
2*(-3)+2-4=-10+2=-8
Не подходит.
ответ: (0,5;3)
1367
1)2x+y-6=0
a) (3;0)
6-6=0
б) (4;-2)
8-2-6=0
в) (5;-2)
10-2-6=2
Не подходит.
г) (-1;8)
-2+8-6=0
ответ: (3;0), (4;-2), (-1;8)
2)5x-2y-8=0
а) (2;1)
10-2-8=0
б) (-3;-11,5)
-15+11,5-8=-11,5
Не подходит.
в) (-1;6)
-5-12-8=-25
Не подходит.
г) (3;3,5)
15-7-8=0
ответ: (2;1), (3;3,5)
Відповідь:
НСД (10; 25) = 5,
НСД (18; 24) = 6,
НСД (7; 12) = 1.
НСД(28; 42) = 14.
НСД (250; 3000) = 250.
НСД (132; 180; 144) = 12.
У розглянутому прикладі ми легко знайшли найбільший спільний дільник чисел, записавши всі дільники кожного з них. Якщо числа великі й мають багато дільників, то знаходження найбільшого спільного дільника цим доволі громіздким.
Розглянемо ще один б знаходження найбільшого спільного дільника, взявши числа 210 і 294. Розкладемо кожне із цих чисел на прості множник
210 = 2 · 3 · 5 · 7; 294 = 2 · 3 · 7 · 7.
Підкреслимо всі спільні прості множники в розкладах даних чисел: 2, 3, 7.
Числа 210 і 294 діляться на кожне із чисел 2, 3, 7 і на їх добуток: 2 · 3 · 7 = 42.
Число 42 є найбільшим спільним дільником чисел 210 і 294:
НСД(210; 294) = 42.
Покрокове пояснення:
Взагалі, якщо число а — дільник числа b, то НСД (а; b) = а.
1 центнер = 100 кг