Если грани наклонены под 45 градусов, то высота равна по длине расстоянию от центра окружности, описанной вокруг основания, до стороны основания.
Т.к. основание - равносторонний треугольник, то если центр описанной окружности соединить с вершинами - получим равнобедренные треугольники с углом при вершине 120 градусов и при основании по 30 градусов и берами равными радиусу описанной окружности.
Радиус описанной окружности на косинус 30 градусов дает половину стороны треугольника, т.е. равен 5 см
Значит радиус окружности = 5 / cos 30 = 10 sqrt(3) / 3
высота треугольников = радиус на синус 30 градусов = 10 sqrt(3) / 6 = 5 sqrt(3) / 3
ответ: 5 sqrt(3) / 3 (или что то же самое = 5 / sqrt(3))
3,1 - 9,3t + t = 0,4t - 5,6
- 9,3t + t - 0,4t = - 5,6 - 3,1
- 8,7t = - 8,7
t = - 8,7 : (- 8,7)
t = 1
Проверка: 3,1 * (1 - 3 * 1) + 1 = 0,4 * (1 - 14)
3,1 * (- 2) + 1 = 0,4 * (- 13)
- 5,2 = - 5,2
- 5 * (х - 7) = 30 - (2х + 1)
- 5х + 35 = 30 - 2х - 1
- 5х + 2х = 30 - 1 - 35
- 3х = - 6
х = - 6 : (- 3)
х = 2
Проверка: - 5 * (2 - 7) = 30 - (2 * 2 + 1)
25 = 25
0,8 * (0,5 - 2х) = 2х + 0,4
0,4 - 1,6х = 2х + 0,4
- 1,6х - 2х = 0,4 - 0,4
- 3,6х = 0
х = 0
Проверка: 0,8 * (0,5 - 2 * 0) = 2 * 0 + 0,4
0,4 = 0,4