Пусть петухов будет х (единиц) , а уток - у (единиц) . Тогда х + 10х + у = 21. Или 11х +у = 21; или у = 21 - 11х. Число у может быть только целым, как и х. Будем подставлять натуральные числа, начиная с наименьшего. Предположить, что х = 0, нельзя, так как петухи все таки были! Предположим, что х = 1. Тогда у = 21 - 11*1 = 10. Возможно. Предположим, х = 2, тогда у = 21 - 11*2 = 21 - 22 = -1. Число петухов не может быть отрицательным, поэтому х не может быть равным 2. Остальные предположения ( х = 3, 4, и так далее) тоже дадут отрицательный результат. Поэтому, х = 1 есть единственное решение уравнения у = 21 - 11*1 = 10 в целых положительных числах. Поэтому петухов было 1 (один) , кур - 10, уток - 10.
Пусть петухов будет х (единиц) , а уток - у (единиц) . Тогда х + 10х + у = 21. Или 11х +у = 21; или у = 21 - 11х. Число у может быть только целым, как и х. Будем подставлять натуральные числа, начиная с наименьшего. Предположить, что х = 0, нельзя, так как петухи все таки были! Предположим, что х = 1. Тогда у = 21 - 11*1 = 10. Возможно. Предположим, х = 2, тогда у = 21 - 11*2 = 21 - 22 = -1. Число петухов не может быть отрицательным, поэтому х не может быть равным 2. Остальные предположения ( х = 3, 4, и так далее) тоже дадут отрицательный результат. Поэтому, х = 1 есть единственное решение уравнения у = 21 - 11*1 = 10 в целых положительных числах. Поэтому петухов было 1 (один) , кур - 10, уток - 10.
4x^2 - 4x + 1 + 6x^2 + 24x - 13 = 0
10x^2 + 20x - 12 = 0
5x^2 + 10x - 6 = 0
D = 100 + 4*5*60 = 100 + 120 = 220
x1,2 = (-10+ - корень 220)/10
х1 * х2 = (-10- корень 220)/10*(-10 + корень 220)/10 = (100 - 10*корень220 + 10*корень 220 - корень 220 в квадрате) / 100 = (100-220)/100 = -120/100 = - 1,2