М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
бес12
бес12
26.06.2020 03:48 •  Математика

Задали написать мини-сочинение по теме окружность и круг.

👇
Ответ:
камил486
камил486
26.06.2020
Окружность-это геометрическая фигура,каждая точка которой ровно удалена от данной точки-центра окружности.
Круг-часть плоскости ограниченая окружностью.
P.S Мы так в классе писали
4,5(21 оценок)
Открыть все ответы
Ответ:
ubsxydbzed
ubsxydbzed
26.06.2020

Общее уравнение прямой

Ax + By + C = 0. (2.1)

Вектор n(А,В) ортогонален прямой, числа A и B одновременно не равны нулю.

Уравнение прямой с угловым коэффициентом

y - yo = k (x - xo), (2.2)

где k - угловой коэффициент прямой, то есть k = tg a, где a - величина угла, образованного прямой с осью Оx, M (xo, yo ) - некоторая точка, принадлежащая прямой.

Уравнение (2.2) принимает вид y = kx + b, если M (0, b) есть точка пересечения прямой с осью Оy.

Уравнение прямой в отрезках

x/a + y/b = 1, (2.3)

где a и b - величины отрезков, отсекаемых прямой на осях координат.

Уравнение прямой, проходящей через две данные точки - A(x1, y1) и B(x2, y2 ):

уравнения. (2.4)

Уравнение прямой, проходящей через данную точку A(x1, y1) параллельно данному вектору a(m, n)

уравнение. (2.5)

Нормальное уравнение прямой

rnо - р = 0, (2.6)

где r - радиус-вектор произвольной точки M(x, y) этой прямой, nо - единичный вектор, ортогональный этой прямой и направленный от начала координат к прямой; р - расстояние от начала координат до прямой

4,7(26 оценок)
Ответ:
razum3466
razum3466
26.06.2020
Завдання33
Розв'язання. Позначимо через а1, а2, а3, а4, а5, а6 числа, про які сказано в умові задачі. Виразимо всі ці числа через а1 і а2:

а3 = а1 + а2;
а4 = а2 + а3 = а1 + 2а2;
а5 = а3 + а4 = 2а1 + 3а2;
а6 = а4 + а5 = 3а1 + 5а2.

Маємо:

а1 + а2 + а3 + а4 + а5 + а6 =
= (1 + 1 + 1 + 2 + 3) · а1 + (1 + 1 + 2 + 3 + 5) · а2 =
= 8а1 + 12а2 = 4 · (2а1 + 3а2) = 4а5 = 4 · 7 = 28.
Відповідь: 28.
Завдання 34
Доведення (методом від супротивного). Припустимо, що у кожного школяра правий сусід не нижче від лівого. Тоді школярі на непарних місцях стоять у порядку неспадання, якщо рахувати зліва направо. Звідси випливає, що самий правий школяр не нижчий від самого лівого. Отримана суперечить з умовою задачі свідчить про хибність припущення.
Завдання 35

Доведення. У результаті виконання вказаних дій через t хвилин можна отримати число 2хt · 3хt. Тут t — кількість хвилин від написання першого числа, х0 = 2, y0 = 1, бо 12 = 22 · 31. Для кожного невід'ємного цілого t справджується одне з двох висловлювань:

або хt + 1 = хt ± 1 i yt + 1 = yt;
або хt + 1 = хt i yt + 1 = yt ± 1.
Отже, парність суми хt + yt змінюється щохвилини. Вона змінюється через непарну кількість хвилин, а через парну кількість хвилин стає такою самою, якою була спочатку.

х0 + y0 = 2 + 1 = 3 — непарне число.

х60 + y60 також має бути непарним, тому не може дорівнювати 4 = 1 + 3.

Отже, через 60 хвилин на дошці буде записано число, відмінне від 54 = 21 · 33.
4,7(25 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ