М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
knowyourmemesboy
knowyourmemesboy
01.07.2022 13:01 •  Математика

Найдите разницу двух чисел если вычитаемое равно 658 и составляет (семь пятых) уменьшающегося (в долгу не останусь)!

👇
Ответ:
Alexbouk
Alexbouk
01.07.2022
1) 658 • 5/7 = 94•5 = 470 - уменьшаемое
2) 470 - 658 = -188 - разность
ответ: -188
4,6(90 оценок)
Открыть все ответы
Ответ:
Алёна0Чан
Алёна0Чан
01.07.2022
Для описания распределения вероятностей непрерывной случайной величины используется дифференциальная функция распределения.
Дифференциальная функция распределения (ДФР) (или плотность вероятности) – это первая производная от интегральной функции.

Интегральная функция распределения является первообразной для дифференциальной функции распределения. Тогда

Вероятность того, что непрерывная случайная величина X примет значение, принадлежащее интервалу (a,b), равна определенному интегралу от дифференциальной функции, взятому в пределах от a до b:

Геометрический смысл ДФР состоит в следующем: вероятность того, что непрерывная случайная величина X примет значение, принадлежащее интервалу (a, b), равна площади криволинейной трапеции, ограниченной осью x, кривой распределения f(x) и прямыми x = a и x = b (рис. 4).

Рис. 4  График дифференциальной функции распределения принято называть кривой распределения.
Свойства дифференциальной функции распределения:
1. Дифференциальная функция распределения неотрицательна, т. е.  
2. Если все возможные значения случайной величины принадлежат интервалу (a, b), то

Дифференциальную функцию распределения часто называют законом распределения вероятностей непрерывных случайных величин.
При решении прикладных задач сталкиваются с различными законами распределения вероятностей непрерывных случайных величин. Часто встречаются законы равномерного и нормального распределения.
1.5. Равномерное распределение непрерывной случайной величиныЗакон равномерного распределения вероятностей непрерывной случайной величины используется при имитационном моделировании сложных систем на ЭВМ как первоначальная основа для получения всех необходимых статистических моделей. При этом, если специально не оговорен закон распределения случайных чисел, то имеют ввиду равномерное распределение.
Распределение вероятностей называют равномерным, если на интервале (a,b), которому принадлежат все возможные значения случайной величины, дифференциальная функция распределения имеет постоянное значение, т. е. f(x) = C.
Так как

то

Отсюда закон равномерного распределения аналитически можно записать так:

График дифференциальной функции равномерного распределения вероятностей представлен на рис.5

Рис. 5 График дифференциальной функции равномерного распределения вероятностей.
Интегральную функцию равномерного распределения аналитически можно записать так:

График интегральной функции равномерного распределения вероятностей представлен на рис. 6

Рис. 6 График интеграль
4,5(66 оценок)
Ответ:
bezlikaya1
bezlikaya1
01.07.2022

Для начала вспомним, что тупой угол - это угол с градусной мерой больше 90° и меньше 180°. Из одной точки можно пустить три луча, которые между собой образуют 3 тупых угла.
Пустим 4-й луч вблизи одного из трёх лучей, у нас добавится дополнительно 2 тупых угла. 5-й луч пустим вблизи второго из числа первых трёх, дополнительно образуются 3 тупых угла. Наконец, пускаем 6-й луч вблизи третьего, получив дополнительно 4 тупых угла. У нас будет получаться как бы три пучка близко расположенных лучей в каждом пучке.
Считаем сколько получилось тупых углов после добаления к первым трём лучам ещё трёх лучей. 3 луча было, плюс 2, плюс 3 и плюс 4, всего 12 лучей.
Итак, для 3-х лучей - 3 тупых угла; для 6 лучей - 12 тупых углов.
Рассуждаем аналогично, добавляя по очереди ещё 3 луча. Добавятся сначало 4 угла, затем 5 и, наконец, 6; т.е. всего добавится 15 тупых углов. А всего для 9 лучей будет 27 тупых углов.
Точно также, считая для 12 лучей, получим дополнительно 6+7+8 = 21 тупых угла, а всего - 48.
Можно было бы и далее продолжать таким но мы замечаем закономерность.
Пусть а1 = 3 - это первый член последовательности. Используя предыдущее значение (рекуррентно), можно вычислить следующее значение по формуле:
a_n = a_{n-1} +2n -3, где n - число лучей кратное 3.
Пробуем вычислить по этой формуле:
 
a_{9} = 12 + 2*9 - 3 =27 \\ \\ a_{12} = 27 + 2*12 - 3 =48 \\ \\ a_{15} =
48 + 2*15 - 3 =75 \\ \\ a_{18} = 75 + 2*18 - 3 =108 \\ \\ a_{21} = 108 + 2*21 -
3 =147 \\ \\ a_{24} = 147 + 2*24 - 3 =192

Итак, для 24 лучей возможно максимум 192 тупых угла.

4,7(20 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ