На сахарный завод в первый день 633 тонны 600 кг свеклы ,во второй день в 2 раза меньше. сколько сахара получится из всей свёклы , если масса сахара составляла одну шестую массы свёклы
Определение множества значений функции (min, max функции, наибольшее, наименьшее значения, экстремумы) Точка x0 называется точкой максимума функции f(x), если существует такая окрестность точки x0, что для всех x ≠ x0 из этой окрестности выполняется неравенство f(x)< f(x0).Точка x0 называется точкой минимума функции f(x), если существует такая окрестность точки x0, что для всех x ≠ x0 из этой окрестности выполняется неравенство f(x)> f(x0).Точки минимума и точки максимума называются точками экстремума.Теорема. Если x0 – точка экстремума дифференцируемой функции f(x), то f ′(x0) =0.Точки, в которых функция имеет производную, равную нулю, или недифференцируема (не имеет производной), называют критическими точками. Точки, в которых производная равна 0, называют стационарными.Геометрический смысл: касательная к графику функции y=f(x) в экстремальной точке параллельна оси абсцисс (OX), и поэтому ее угловой коэффициент равен 0 ( k = tg α = 0).Теорема: Пусть функция f(x) дифференцируема на интервале (a;b), x0 С (a;b), и f ′(x0) =0. Тогда:1) Если при переходе через стационарную точку x0 функции f(x) ее производная меняет знак с «плюса» на «минус», то x0 – точка максимума.2) Если при переходе через стационарную точку x0 функции f(x) ее производная меняет знак с «минуса» на «плюс» , то x0 – точка минимума. ПРАВИЛО нахождения наибольшего и наименьшего значения функции f(x) на отрезке [a;b]. 1. Найти призводную функции и приравнять нулю. Найти критические точки.2. Найти значения функции на концах отрезка, т.е. числа f(a) и f(b).3. Найти значения функции в тех критических точках, которые принадлежат [a;b].4. Из найденных значений выбрать наибольшее и наименьшее. ПРАВИЛО нахождения минимума и максимума функции f(x) на интервале (a;b).1. Найти критические точки f(x) (в которых f ′(x)=0 или f(x) не существует) .2. Нанести их на числовую прямую (только те, которые принадлежат (a,b) ).f ′(x) + – + a x0x1 bf (x) / \ /3. Расставить знаки производной в строке f ′(x) , расставить стрелки в строке f(x).4. x max = x0, x min = x1.5. y max = y(x0), y min = y(x1).
(y+1)²-4y=-5+(y-2) 1)Раскрыть ВСЕ скобки!! У²+2у+1-4у=-5+у-2(ЗАПОМНИТЬ:Если перед скобкай стоит "+" то все знаки при раскрытии скобки сохраняются,а если "-" знаки применяются например "-" станет "+" а "+" станет "-" вот так вот!) 2)Теперь из правой части переводим в левую часть с протевоподожным знаком: У²+2у+1-4у+5-у+2=0 У²-3у+8=0 3)Получилось обычное квадратное уравнение которое решается через D(дискременант),формула которого D=b²-4ac D=9-4×1×8=9-32 ответ: решений нет (пустое множество в тетрадке указывается маленький зачеркнутый кружок)
решение: 633600+633600:2=950400
950400:6=158400кг