Пошаговое объяснение:
5/6 = 2х/3 4/9 = 8х/45 5х/12 = 2/3
2х * 6 = 3 * 5 8х * 9 = 45 * 4 5х * 3 = 12 * 2
12х = 15 72х = 180 15х = 24
х = 15 : 12 х = 180 : 72 х = 24 : 15
х = 1,25 х = 2,5 х = 1,6
6/7 = 10х/21 8/9 = 4х/27 27/5х = 9/16
10х * 7 = 21 * 6 4х * 9 = 27 * 8 5х * 9 = 27 * 16
70х = 126 36х = 216 45х = 432
х = 126 : 70 х = 216 : 36 х = 432 : 45
х = 1,8 х = 6 х = 9,6
Очень хорошая задачка, ведь она "родственница" всех задач на КПД. Посмотрим на неё с этой стороны.
Предположим, что никаких других сил не действует. (это обязательная фраза, потому что, например, в потенциальном поле тяжести Земли и при направленности силы задачи не перпендикулярно силе тяжести эту силу тяжести нужно учитывать . В условии задачи никаких данных о третьих силах нет, но фразу лучше прицепить.)
Предположим, что все силы и скорости направлены одинаково(это тоже обязательная фраза, потому, что все эти величины векторные и если они не направлены в одну сторону - в задаче будет не хватать исходных данных)
И только после этих двух обязательных Предположим будем идти дальше.
Теперь рассуждаем так "полезная" работа Еп=Ек2 - Ек1. Ек- кинетические энергии в начале и в конце.
"вредная" работа Етр=Fтр*S.
Полная работа Еп+Етр.
Вот и всё. Нам полную работу-то и нужно найти. Можно найти КПД, уж если так хочется. В общем случае(при наличии ещё каких-то сил), они учитываются
во "вредной" работе, наверное, точнее "побочной", но "вредная" легче запоминается, ярче.
Считаем. Все исходные данные в СИ, что упрощает арифметику
Ek2=m*v2*v2/2 = 2*5*5/2=25 Ek1 = m*v1*v1/2=2*2*2/2=4 Еп=25-4=21
Eтр=Fтр*S = 2*10 =20
Е=20+21=41дж.