по 43 ученика, 13 аудиторий
Пошаговое объяснение:
Обозначим буквой a общий делитель чисел 172 и 387, тогда 172 = ax и 387 = ay. Получается, что в каждой аудитории разместили по a учеников, олимпиаду по химии писали в x = 172/a аудиториях, олимпиаду по литературе — в y = 387/a аудиториях.
Вычислим наибольший общий делитель 172 и 387 по алгоритму Эвклида:
387 = 172×2+43
172 = 43×4+0
Стало быть, НОД(172; 387) = 43. Впрочем, так как 43 — число простое, оно является единственным отличным от единицы общим делителем 172 и 387 (выделять отдельную аудиторию для каждого участника нерационально и так никто делать не будет).
Поэтому ответ получается однозначным, а именно: в каждой аудитории разместили по 43 ученика, а предоставили всего 172/43 + 387/43 = 4+9 = 13 аудиторий.
Проверяем 24+16 =40 ; 36+24= 60 ; 60-40= 20 все условия задачи выполнены.
Если кто-то сможет решить данную задачу через уравнение , буду рад посмотреть)