М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
EM20011
EM20011
24.03.2023 13:29 •  Математика

Сколько 41 250 копеек это сколько рублей и копеек

👇
Ответ:
506010
506010
24.03.2023
41250/100=412 рублей 50 копеек
4,6(100 оценок)
Ответ:
pipinkorotkiy1
pipinkorotkiy1
24.03.2023
412 рублей,50 копеек
4,8(19 оценок)
Открыть все ответы
Ответ:
Mmmmmmamba
Mmmmmmamba
24.03.2023
1)
 2^{ x^{2} } \ \textgreater \ (\frac{1}{2} )^{2x}
ОДЗ: х - любое значение
2^{ x^{2} } \ \textgreater \ 2^{-2x}
При равных основаниях, больших единицы (а у нас 2>1), знак неравенства сохраняется и для показателей степеней.
х² > - 2x
х²+2х > 0
x(x+2) > 0

         +               -                               +
________|____________|________________
                -2                      0

ответ: х ∈ ]-∞; -2[∪]0; +∞[

2) 
\sqrt{x-1} \geq 0
ОДЗ: х-1 ≥0;    => x≥1
( \sqrt{x-1} )^{2} \geq 0^{2}
x-1 \geq 0
x \geq 1
ответ: x∈[1;  + ∞[

3)
log_{2}(x-7) \leq 3
ОДЗ: х-7>0     =>   x>7
log_{2} (x-7)\leq log_{2}8
Если основание логарифма в неравенстве больше единицы, то знак неравенства сохраняется и для чисел.
x-7 \leq 8
x \leq 7+8
x \leq 15
Учитывая ОДЗ x>7 и наше решение х≤15, получаем ответ: 7<x≤15
ответ: х∈]7; 15]

4)
log_{ \frac{1}{2} } (x-7) \geq 3
ОДЗ: х-7 >0     =>   x>7
log_{ \frac{1}{2} } (x-7) \geq log_{ \frac{1}{2} } \frac{1}{8}
Если основание логарифма в неравенстве меньше единицы, то знак неравенства для чисел меняется на противоположный.
x-7 \leq \frac{1}{8}
Умножив обе части на 8, получим:
8x-56\leq 1
8x \leq 57
x \leq7,125
Учитывая ОДЗ: x>7 и наше решение х≤7,125 получаем ответ: 7<x≤7,125
ответ: х∈]7;  7,125]
4,6(95 оценок)
Ответ:
DixonVeit
DixonVeit
24.03.2023
Пусть вторая труба заполняет бассейн за х часов, а первая за (х+4) часов.
За 1 час каждая из них заполняет такую часть бассейна:
первая: (1/(х+4)),
вторая: (1/х).
По условию задачи:
7*(1/(х+4)) + 2*(1/(х+4))+(1/х)) = 1.
Решаем это уравнение:
(7/(х+4)) + 2*((х+х+4)/(х*(х+4)) = 1.
Приводим к общему знаменателю:
7х+4х+8 = х(х+4).
Получаем квадратное уравнение:
х² - 7х - 8 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-7)^2-4*1*(-8)=49-4*(-8)=49-(-4*8)=49-(-32)=49+32=81;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√81-(-7))/(2*1)=(9-(-7))/2=(9+7)/2=16/2=8;x_2=(-√81-(-7))/(2*1)=(-9-(-7))/2=(-9+7)/2=-2/2=-1  этот отрицательный корень отбрасываем.

ответ: первая труба может наполнить бассейн за 8+4 = 12 часов, а вторая ха 8 часов.
4,5(91 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ