площадь круга описывающий правильный шестиугольник равна S=πR²,
площадь вписанного круга равна s=πr².
R- описанной окружности равен стороне вписанного шестиугольника: R=a, чтобы вычислить радиус вписанной окружности, соедините две смежные вершины шестиугольника с центром окружности. Получили равносторонний треугольник , в котором высота, опущенная из вершины, являющейся центром окружностей, на сторону шестиугольника является радиусом вписанной окружности.Вычислим этот радиус.
r²=a²-(a/2)²= a²-a²/4=a²·3/4=( a√3)/2 или r=a·sin60=(a·√3)/2
площадь кольца равна разности площади круга описанной окружности и площади круга вписанной окружности: πa²-π·((a√3)/2)²= πa²-π·3a²/4=π(a²-3a²/4)=πa²/4
ответ:πa²/4
Подробнее - на -
Пошаговое объяснение:
180*(30-2)=5040(мл) б) - неверно
180*(30-3)=4860(мл) в)- верно
5000-4860=140(мл) останется г)- верно
30*(180-10)=5100(мл) д) - неверно
(5000+500):180=30(ост.100 мл) е)- верно