Обозначим x -объем одного бидона. Тогда в первый магаз привезли 18х литров, а во второй 12х литров получаем уравнение 18x-12x=228 6x=228 надо найти 18x и 12x
Скорость поезда 50 км/ч и в пути, до момента когда его догнал вертолёт, он был (12 + х) ч, а следовательно он проехал 50*(12 + х) км, что составило половину всего пути. Вертолёт летел со скоростью в 7 раз больше, чем скорость поезда: 7 * 50 = 350 км/ч и в пути был х ч, пролетев 350х км. Так как вертолёт догнал поезд приравняем пройденные пути: 600 + 50х = 350х 350х - 50х = 600 300х = 600 х = 600 : 300 х = 2 ч -в пути был вертолёт А значит он пролетел 2 * 350 = 700 км, что составляет половину пути. Значит весь путь 700 * 2 = 1400 км. ответ: 1 400 км
Боковая сторона — а, отрезки, на которые её делит окружность — а1 и а2., радиус вписанной окружности — р, основания — в1 и в2. достраиваем треугольники, образованные центром окружности, углами трапеции и точками касания, получаем 8 прямоугольных треугольников, из которых два — с катетами р и а1, два — с катетами р и а2, два — с катетами р и в1/2, и два — с катетами ри в2/2. из теоремы пифагора для треугольников с общими гипотенузами (отрезки от центра окружности к вершинам) имеем р^2 + а1^2 = р^2 + в1^2/4 р^2 + а2^2 = р^2 + в2^2/4, отсюда в1 = 2*а1 в2 = 2*а2 ищем высоту, для этого строим высоту из верхней вершины. эта высота отсекает на нижнем основании отрезок х. поскольку трапеция равнобочная, х = (в2-в1)/2 = а2-а1. из теоремы пифагора имеем н^2 = (а1 + а2)^2 - (а2 -а1)^2 = 4а1*а2 с = (в1 + в2)*н/2 = 2*(а1 + а2)*квкор (а1*а2) (квкор — квадратный корень) . с = 2 * 26 * кв кор (8*18) = 2*26*12 = 624.
получаем уравнение
18x-12x=228
6x=228
надо найти 18x и 12x
12x=456
18х=684