Событие Р(А) состоит из двух - Р1 - взять ЛЮБУЮ деталь И -Р2 - взять ГОДНУЮ. 1) Вероятность взять любую Р1(i) - это доля каждого цеха в выпуске продукции исходя из пропорции в производстве. р1(1)= р1(2) = 2/5=0,4 и р1(3) = 1/5 = 0,2. 2) Для упрощения (потом будет видно) сосчитаем вероятность взять БРАК, а не годную деталь. Три цеха - три события ИЛИ - для них вероятности СУММИРУЮТСЯ. Для каждого цеха взять БРАК - событие И - И цех И брак- вероятности УМНОЖАЮТСЯ. Вероятность БРАКОВАННОЙ детали - Q(А) = 0,4* 0,1 + 0,4*0,15 + 0,2* 0,05 = 0,04+0,06+0,01 = 0,11 = 11% - брак. Вероятность НЕ бракованной -P(A) = 1 - Q(A) = 99% - ГОДНЫХ. ОТВЕТ: Вероятность НЕ бракованной равна 99%. Справочно: В таблице приведен расчет и по формуле Байеса из которой видно, что наиболее вероятно это будут детали 1-го или 2-го цехов.
Центр вписанной окружности лежит в точке пересечения биссектрис. Если из этой точки провести перпендикуляры к сторонам треугольника, то они будут радиусами вписанной окружности. Теперь смотрим треугольники, в которых гипотенузы - расстояния от К до сторон треугольника, катеты (один = ОК, другой - радиусы вписанной окружности) Эти треугольники равны по 2-м катетам. ОК = 15, Значит, будем искать радиус вписанной окружности. Формула Герона: Sтр-ка = √(32*12*12*8) = 192 Ещё одна формула S тр-ка: S = p*r ( где р - полупериметр, r - радиус вписанной окружности) 192 = 32*r r = 6 Теперь смотрим 1-й треугольник. По т.Пифагора х² = 15² + 6² х² = 225 +36=261 х = √261
2) 50/10=5 пучков
ответ: получилось 5 пучков.