1) BC =√(15² +20²) =25 ΔCBH (15 ;20 ;25)
AB=√(15² +8²) =17; ΔABH (8;15;17)
R =a*b*c/4S ;
r =S/p , где p полупериметр .
AC=AH +CH =8 +20 =28;
S =(1/2)*AC * BH =14*15 =210 (см²)
R =a*b*c/4S =25*28*17/4*210 = 85/6;
r =S/p ;
p =(17+25+28)/2 =35
r =210/35;
r =6 .
Пошаговое объяснение:
Примечание :
(15 ;20 ;25)= (5*3; 5*4 ;5*5) ; (8;15;17) Пифагорова треугольники
прямоугольные треугольники с сторонами выраж натуральными числами
2) h=32; r=12
R --?
R =a*b*c/4S =ab²/4S.
S =pr
ah/2 =r*(a +2b)/2 ;
a*32 =12(a+2b) (a - , b ).
8a =3(a+2b);
b=5a/6 ;
b² - (a/2)²=12²;
(5a/6)² -(a/2)² =12² ⇒a=18 ;
b=5a/6 =5*18/6 =15.
S=ah/2 =18*32/2 =288
R =a*b*b/4S =18*15*15/4*288 ;
R=225/64.
ЕСЛИ не сложно пометь лутшим
7
Пошаговое объяснение:
Окружность можно разбить на секторы с градусной мерой 1/9 градуса, так как все повороты треугольника происходят на угол, кратный 1/9 градуса. Пусть 1 деление соответствует 1/9 градуса. Тогда происходили такие действия:
1) Треугольник повернули на 1 деление - соответствует углу 1/9 градуса
2) Повернули на 3 деления - соответствует углу 1/3 градуса
3) Повернули на 9 делений - соответствует 1 градусу
...
103) Повернули на деления - соответствует
градусов.
Тогда для поворота номер n величина поворота относительно начального положения треугольника (в делениях) равна сумме геометрической прогрессии:
Можно заметить, что . Действительно,
.
Видим, что два положения треугольника совпадают, если разность углов поворота кратна 120 градусам или же 120/(1/9)=1080 делений, так как треугольник равносторонний.
Пусть был угол поворота в делениях , где
. При новом повороте треугольника угол поворота станет равным
. Это значит, что преобразование f -> 3f+1 можно применять с отсечением периода.
Задача свелась к тому, чтобы найти количество уникальных значений последовательности .
Тогда построим последовательность положений треугольника:
0) 0 (начальное положение)
1) 3*0+1 (mod 1080) = 1
2) 1*3+1 (mod 1080) = 4
3) 4*3+1 (mod 1080) = 13
4) 13*3+1 (mod 1080) = 40
5) 40*3+1 (mod 1080) = 121
6) 121*3+1 (mod 1080) = 364
7) 364*3+1 (mod 1080) = 13
Видим, что на шаге 7 появилось уже полученное ранее значение. Следовательно, дальше повороты будут получаться так же циклически. Поэтому количество уникальных положений треугольника равно 7.
1) 8 - 2 * 2 = 12 ( км.)
2) 8+ 2 * 3 = 30 (км.)
3) 30+12 = 42
ответ: лодка проехала 42 километра.