1) -4у + 10 > 2(1 - у) + 24
-4у + 10 > 2 - 2y + 24
-4y + 2y > 2 + 24 - 10
-2y > 16
y < -8
2) 49 - 3(3 - 2z) < 1 - 4z
49 - 9 + 6z < 1 - 4z
6z + 4z < 1 - 49 + 9
10z < - 39
z < - 3,9
3) 7(6 - 5t) - 5 < 1 - 41t
42 - 35t - 5 < 1 - 41t
-35t + 41t < 1 - 42 + 5
6t < -36
t < -6
4) -0,5(8x + 9) - 0,9 > 4x - 3
-4x - 4,5 - 0,9 > 4x - 3
-4x -4x > -3 + 4,5 + 0,9
-8x > 2.4
x < -0.3
Пошаговое объяснение:
Дифференциал функции
dy=f′(x)dx
Как видим, для нахождения дифференциала нужно умножить производную на dx. Это позволяет из таблицы формул для производных сразу записать соответствующую таблицу для дифференциалов.
Полный дифференциал для функции двух переменных: Дифференциал функции
Полный дифференциал для функции трех переменных равен сумме частных дифференциалов: d f(x,y,z)=dxf(x,y,z)dx+dyf(x,y,z)dy+dzf(x,y,z)dz
Определение. Функция y=f(x) называется дифференцируемой в точке x0, если ее приращение в этой точке можно представить в виде ∆y=A∆x + α(∆x)∆x, где A – константа, а α(∆x) – бесконечно малая при ∆x → 0.
Требование дифференцируемости функции в точке эквивалентно существованию производной в этой точке, причем A=f’(x0).
Пусть f(x) дифференцируема в точке x0 и f '(x0)≠0, тогда ∆y=f’(x0)∆x + α∆x, где α= α(∆x) →0 при ∆x→0. Величина ∆y и каждое слагаемое правой части являются бесконечно малыми величинами при ∆x→0. Сравним их: , то есть α(∆x)∆x – бесконечно малая более высокого порядка, чем f’(x0)∆x.
, то есть ∆y~f’(x0)∆x. Следовательно, f’(x0)∆x представляет собой главную и вместе с тем линейную относительно ∆x часть приращения ∆y (линейная – значит содержащая ∆x в первой степени). Это слагаемое называют дифференциалом функции y=f(x) в точке x0 и обозначают dy(x0) или df(x0). Итак, для произвольных значений x
dy=f′(x)∆x. (1)
Полагают dx=∆x, тогда
dy=f′(x)dx. (2)
ПРИМЕР. Найти производные и дифференциалы данных функций.
а) y=4tg2x
дифференциал:
б)
дифференциал:
в) y=arcsin2(lnx)
дифференциал:
г)
=
дифференциал:
ПРИМЕР. Для функции y=x3 найти выражение для ∆y и dy при некоторых значениях x и ∆x.
Решение. ∆y = (x+∆x)3 – x3 = x3 + 3x2∆x +3x∆x2 + ∆x3 – x3 = 3x2∆x+3x∆x2+∆x3; dy=3x2∆x (взяли главную линейную относительно ∆x часть ∆y). В данном случае α(∆x)∆x = 3x∆x2 + ∆x3.
надеюсь правильно
Выражение x^2dy=3y^2dx, y(1)=2 для дальнейших вычислений представлено в математическом виде как x^2*d3*y^2*dxy*(1). В этом выражении необходимо правую часть перенести со знаком минус в левую часть
1-в
2-д
3-г
4-б
5-а
Второе задание:
А