1. Несколько уравнений, в которых одноименные неизвестные обозначают одну и ту же величину, называются системой уравнений.
2. Решить такую систему — значит найти множество всех общих для обоих уравнений решений.
3. Решением системы линейных уравнений двух переменных является любая упорядоченная пара, удовлетворяющая каждому уравнению независимо. Мы можем проверить решение, подставив значения в каждое уравнение, чтобы увидеть, удовлетворяет ли упорядоченная пара обоим уравнениям.
4. Две системы уравнений называются равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.
1. Несколько уравнений, в которых одноименные неизвестные обозначают одну и ту же величину, называются системой уравнений.
2. Решить такую систему — значит найти множество всех общих для обоих уравнений решений.
3. Решением системы линейных уравнений двух переменных является любая упорядоченная пара, удовлетворяющая каждому уравнению независимо. Мы можем проверить решение, подставив значения в каждое уравнение, чтобы увидеть, удовлетворяет ли упорядоченная пара обоим уравнениям.
4. Две системы уравнений называются равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.
1)=-9,6 х
2)=0,54 у
3)=-20 ab
4)=1,6 xyz
5)=-1/8 аb
6)=-2/3 ху
№2.
=-10ab=-10*1 1/15*(-4 5/8)=148/3=49 1/3