Название
Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.
Например, в человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.
Основные понятия
Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.
Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.
Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.
Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.
Популярные ошибки
Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.
Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.
Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.
В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.
Однажды барон Мюнхгаузен посетил остров, на котором росли огуречные деревья. Плоды этих деревьев - единственная пища жителей острова. Мюнхгаузен наблюдал, как муж с женой собирали урожай огурцов. Муж собрал 12 корзин огурцов, жена - 8 таких же корзин, причем муж собрал на 40 килограммов (кг) больше. Сколько килограммов огурцов собрал муж? Сколько жена?
Очень нужно, правда!
Решение
1) узнаем на сколько корзин собрал больше муж чем жена:
12 - 8 = 4 корзины
2) узнаем сколько килограммов огурцов в одной корзине:
40/4=10 кг
3) узнаем сколько кг собрал муж:
12*10=120 кг
4) узнаем сколько кг собрала жена:
8*10=80 кг