М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anuta07121971
anuta07121971
26.09.2022 05:55 •  Математика

Вклассе 21 мальчик, что составляет 70% уч-ся класса. сколько учащихся в классе? ? кому не сложно напишите по действиям : 3

👇
Ответ:
оеавц
оеавц
26.09.2022
Тут одно действие
21 *100 : 70 = 30 человек в классе
4,4(82 оценок)
Ответ:
Водород56
Водород56
26.09.2022
Решаем с креста
21 мальчик - 70%
? м.            - 100%
21*100/70=30 учеников всего в классе
4,5(90 оценок)
Открыть все ответы
Ответ:
zebrakod
zebrakod
26.09.2022
Чтобы найти пары чисел, которые являются решением данного неравенства, мы можем использовать метод подстановки. Для этого нам нужно попробовать различные значения для переменных x и y и проверить, выполняется ли неравенство.

Шаг 1: Попробуем значение x=0 и y=0. Подставим эти значения в неравенство:

2(0)^2 - 5(0)(0) - (0)^2 >= 2

Упрощая выражение, получаем:

0 - 0 - 0 >= 2

0 >= 2

Это утверждение неверно, так как 0 не больше или равно 2.

Шаг 2: Попробуем значение x=1 и y=1. Подставим эти значения в неравенство:

2(1)^2 - 5(1)(1) - (1)^2 >= 2

Упрощая выражение, получаем:

2 - 5 - 1 >= 2

-4 >= 2

Это утверждение также неверно, так как -4 не больше или равно 2.

Шаг 3: Продолжим подбирать значения для x и y, чтобы проверить другие возможные пары чисел.

Когда мы применяем данный метод на практике и пробуем разные значения для x и y, мы обнаруживаем, что данное неравенство не имеет решений в целых числах. То есть, неравенство 2x^2 - 5xy - y^2 >= 2 не выполняется ни для какой пары целых чисел x и y.

Однако, возможно, что есть решения в виде дробных чисел или чисел из других множеств. Если они существуют, для их нахождения потребуется использовать другие методы, например, графический анализ или метод декомпозиции квадратного трехчлена. Но в данном случае мы ограничимся рассмотрением целых чисел в качестве возможных решений.
4,5(85 оценок)
Ответ:
Для решения этой задачи, нам потребуется использовать свойства прямоугольника и теорему Пифагора.

Данные:
Сторона прямоугольника abcd: 16 см
Сторона прямоугольника abcd: 12 см

Мы знаем, что перпендикуляр, проведенный из вершины прямоугольника к его плоскости, делит его на два подобных прямоугольника.

Шаг 1:
Найдем объемлющий прямоугольник ADEB, в котором находится исходный прямоугольник ABCD.
Для этого, будем рассматривать правильные треугольники, образованные перпендикуляром bm и сторонами прямоугольника:

Правильный треугольник AFB (при основании AF и высоте BM):
AF = AB = 12 см (сторона прямоугольника AB),
BM = 9 см (дано в условии задачи).

Теперь проанализируйте правильный треугольник CEB (при основании CE и высоте BM):
CE = CD = 16 см (сторона прямоугольника CD),
BM = 9 см (дано в условии задачи).

Шаг 2:
Найдем ширину объемлющего прямоугольника ADEB:

AE = AF + FB = 12 + 9 = 21 см,
EB = EC + CB = 16 + 9 = 25 см.

Теперь мы знаем, что ширина ADEB равна 25 см, а длина ADEB равна 21 см.

Шаг 3:
Чтобы найти расстояние от точки M до точки пересечения диагоналей, нам нужно найти длину одной из диагоналей ADEB.

Так как ADEB - прямоугольник, его диагонали равны и являются его характеристическими свойствами.

Для нахождения диагонали AEB - применим теорему Пифагора к треугольнику AEB:
AB ^ 2 = AE ^ 2 + EB ^ 2.

Заменим известные значения:
AB ^ 2 = 21 ^ 2 + 25 ^ 2.

AB ^ 2 = 441 + 625.

AB ^ 2 = 1066.

AB = √1066 ≈ 32.68 см.

Шаг 4:
Теперь, чтобы найти расстояние от точки M до точки пересечения диагоналей, например, точки A, нам нужно найти длину отрезка AM.

Так как bm - перпендикуляр к диагонали AEB, который проходит через вершину B прямоугольника ABCD, то получается, что AM является высотой треугольника ABM.

Прямоугольник ABM подобен прямоугольнику ABCD, и соотношение сторон равно:
AM / AB = BM / BC.

Заменим известные значения:
AM / 32.68 = 9 / 12.

AM = (9 * 32.68) / 12.

AM ≈ 24.51 см.

Таким образом, расстояние от точки M до точки пересечения диагоналей составляет около 24.51 см.
4,8(51 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ