Пошаговое объяснение:
1) 2 1/6 :(8 3/4-5 1/2)=2/3
8 3/4-5 1/2=8 3/4-5 2/4=3 1/4
2 1/6:3 1/4=13/6*4/13=2/3
2)3 17/20:(3 2/5+1 11/15) =3/4
3 2/5+1 11/15=3 6/15+ 1 11/15=4 17/15=
5 2/15
3 17/20:5 2/15=77/20*15/77=3/4
3) (4 3/5-2 1/5):1 1/10 =2 2/11
4 3/5-2 1/5=2 2/5
2 2/5:1 1/10=12/5*10/11=24/11=2 2/11
4)(1 7/10+4/5):1 7/8=1 1/3
1 7/10+4/5=1 7/10+8/10=1 15/10=2 1/2
2 1/2:1 7/8=5/2*8/15=4/3=1 1/3
5) 3 1/8:15/16-1/4
3 1/8:15/16=25/8*16/15=10/3=3 1/3
3 1/3-1/4=3 4/12-3/12=3 1/12
6)1 9/35:(1 1/5+2/3) =33/49
1 1/5+2/3=1 3/15+10/15=1 13/15
1 9/35:1 13/15=44/35*15/28=33/49
7) (11 5/8+7 1/6):3 5/12 =18 19/24
11 5/8+7 1/6=11 15/24+7 4/24=5 1\2
18 19\24:3 5\12=451\24*12\41=11\2=5 1\2
8) (8 7/12-2 5/8):2 1/6=2 3/4
8 7/12-2 5/8=8 14/24-2 15/24=5 23/24
5 23/24:2 1/6=143/24*6/13=11/4=2 3/4
ответ: 43
Пошаговое объяснение:
p^3 + 4p^2 + 4p = p(p+2)^2
Пусть p нечетно, то есть p отлично от двух, тогда p и p+2 - взаимнопростые.
У простого числа p два делителя: p и 1, тогда поскольку 1 единственный общий делитель с p+2 или (p+2)^2, то если (p+2)^2 имеет n делителей:
d1=1,d2,d3,...,dn = (p+2)^2, то число p(p+2)^2 имеет делители:
d1=1, d2, d3,..., dn = (p+2)^2, pd1=p, pd2, pd3,..., pdn = p(p+2)^2 - имеет 2n делителей, тогда (p+2)^2 имеет ровно 30/2 = 15 делителей.
Пусть: p1, p2, p3,..., pk - простые делители числа (p+2)^2 в произвольном порядке, а поскольку (p+2)^2 - полный квадрат, то каждое простое число из множества p1, p2, p3,..., pk встречаются четное число раз в разложении числа (p+2)^2 на простые множители.
Пусть каждое из чисел p1, p2, p3,..., pk встречается :
2n1, 2n2, 2n3,..., 2nk раз cоответственно, тогда из комбинаторных соображений общее число делителей числа (p+2)^2 равно: (у числа p+2 они встречаются n1,n2,n3,..., nk раз)
(2n1 + 1)(2n2+1)(2n3 + 1)...(2nk + 1) = 15 = 5*3
5*3 имеет 4 положительных делителя: 1,3,5,15. 1 не подходит, ибо 2ni + 1 >=3
То есть имеем два варианта. У числа (p+2)^2 только 2 простых делителя, каждый из которых встречается n1 и n2 раза:
2n1 + 1 = 3
n1 = 1
2n2 + 1 = 5
n2 = 2
Иначе говоря:
p+2 = p1*p2^2
Или второй вариант:
у числа (p+2) один простой делитель, что встречается n1 раз :
2n1 +1 = 15
n1 = 7
p+2 = p1^7
Рассмотрим первый случай:
p+2 = p1*p2^2
p = p1*p2^2 - 2
Минимально возможные нечетные p1 и p2: p1 = 3; p2 = 5.
Нетрудно заметить, что 5*3^2 - 2 = 43 - простое, а значит
p = 5*3^2 - 2 = 43 - минимальное нечетное простое число удовлетворяющее условию при данном варианте.
Второй случай рассматривать нет смысла, ибо :
p = p1^7 - 2 >= 3^7 - 2 > 43
Осталось проверить тривиальный случай p = 2
p(p+2)^2 = 2*4^2 = 2^5 - имеет 6 делителей.
Таким образом, наименьшее простое число p такое, что p^3+4p^2+4p имеет ровно 30 положительных делителей это 43.
|
|
|
Только линии сплошные)))