25
Пошаговое объяснение:
x - скорость лайнера, км/ч.
y - скорость сухогруза, км/ч.
z - скорость течения, км/ч.
1 ч 36 мин = 1 ч + 36/60 ч = 1 ч + 3/5 ч = 8/5 ч
1) Если лайнер и сухогруз идут в одном направлении по течению реки.
Система уравнений:
100/((x+z)-(y+z))=8 |4
100/((x+z)+(y-z))=8/5 |4
25=2(x+z-y-z); x-y=25/2
25·5=2(x+z+y-z); x+y=125/2
x+y-x+y=125/2 -25/2
2y=100/2
y=50/2=25 км/ч - скорость сухогруза.
2) Если лайнер и сухогруз идут в одном направлении против течения реки.
Система уравнений:
100/((x-z)-(y-z))=8 |4
100/((x-z)+(y+z))=8/5 |4
25=2(x-z-y+z); x-y=25/2
25·5=2(x-z+y+z); x+y=125/2
Решение смотри выше.
y=25 км/ч - скорость сухогруза.
Решение задач :
Задача № 1 :
Преобразуем уравнение к следующему виду: (х – 2006)(у - 2006) = 20062.
Уравнение имеет решения, например, х = у = 4012.
Задача № 2 :
Преобразуем выражение в левой части равенства, учитывая, что α + β + γ = π,
и применяя формулы: cos2x = (1 + cos2x)/2, cosx = - cos(π - x), cosx + cosy = (2cos((x + y)/2))cos((x - y)/2),
получим справедливое тождество. Задача № 4 :
Пусть y = x2 – 3x3. Тогда y' = 2x – 9x2 и с метода интервалов получаем, что y' < 0 при всех x>2/9.
Но 1/4>2/9, следовательно, функция y(x) убывает на луче [1/4; +∞].
Это значит, что x2 - 3x3 < 1/16 - 3/64 = 1/64 < 1/64.
Задача № 5 :
Окружим каждый квадрат полоской шириной 1/2.
Образующие фигуры тоже квадраты со стороной 1 + 2 x 1/2 = 2, имеют площадь равную 4.
Их общая площадь равна 4 x 120 = 480, в то время как искомая площадь равна 500.
Следовательно, найдется точка, которая не покрыта построенными квадратами, но это значит, что она удалена от данных квадратов не меньше чем на по всем направлениям.
Круг радиуса с центром в этой точке не имеет общих точек ни с одним из квадратов.
120*0,3=400 саженцев привезли всего, то есть 100%
400-120=280 саженцев лип привезли