Центр правильного многоугольника - точка пересечения его диагоналей. Правильный 6-угольник делится его диагоналями на 6 равных правильных треугольников с равными площадями.
Пусть 6-угольник А1А2А3А4А5А6 с цетром О.
Он состоит из 6 треугольников А1А2О, А2А3О, А3А4О, А4А5О, А5А6О, А6А1О.
Если прямая проходит через одну из диагоналей, то в каждой части остается по 3 равных треугольника, очевидно, что их площадь равна.
Если прямая не совпадает с диагональю, а проходит через треугольники А1А2О и А4А5О.
В одной части фигуры остались 2 целых треугольника А2А3О и А3А4О, в другой А5А6О и А5А6О. Эти части равны.
Треугольники А1А2О и А4А5О разрезаны на 2 части. Точка пересечения прямой с со стороной треугольника А1А2 - В, со стороной треугольника А4А5 - С.
Докажем равенство получившихся треугольников А1ВО и А4СО. Они равны по стороне - А1О=А4О и 2 углам - углы ОА1В и ОА4С равны т. к. это углы равносторонних треугольников. Углы А1ОВ и А4ОС равны как вертикальные. Аналогично для треугольников ВА2О и СА5О.
Пусть х км/ч скорость катера в стоячей воде, тогда по течению скорость (х+5) км/ч, против течения скорость (х-5) км/ч. Составляем уравнение по условию задачи,заметив, что 10 мин = 10/60 = 1/6 часа: 33 / (х+5) + 33/(х-5) = 1,5 - 1/6 1,5-1/6 = 1_1/2 -1/6 = 1_3/6 - 1/6 = 1_2/6 =1_2/6 = 1_1/3=4/3
33/(х+5) + 33/(х-5) = 4/3 проводим к общему знаменателю 3(х-5)(х+5) и отбрасываем его, заметив, что х≠3 и х≠-3, получаем: 33*3(х-5)+33*3(х+5) = 4(х+5)(х-5) 99х-495+99х+495=4х2-100 4х2-198х-100=0 |:2 2х2-99х-50=0 Д=9801+400=10201=101*101 х(1)=(99+101) / 4 = 50 х(2)=(99-101)/4<0 не подходит под условие задачи, скорость >0 ответ: 50 км/ч собственная скорость катера
Центр правильного многоугольника - точка пересечения его диагоналей. Правильный 6-угольник делится его диагоналями на 6 равных правильных треугольников с равными площадями.
Пусть 6-угольник А1А2А3А4А5А6 с цетром О.
Он состоит из 6 треугольников А1А2О, А2А3О, А3А4О, А4А5О, А5А6О, А6А1О.
Если прямая проходит через одну из диагоналей, то в каждой части остается по 3 равных треугольника, очевидно, что их площадь равна.
Если прямая не совпадает с диагональю, а проходит через треугольники А1А2О и А4А5О.
В одной части фигуры остались 2 целых треугольника А2А3О и А3А4О, в другой А5А6О и А5А6О. Эти части равны.
Треугольники А1А2О и А4А5О разрезаны на 2 части. Точка пересечения прямой с со стороной треугольника А1А2 - В, со стороной треугольника А4А5 - С.
Докажем равенство получившихся треугольников А1ВО и А4СО. Они равны по стороне - А1О=А4О и 2 углам - углы ОА1В и ОА4С равны т. к. это углы равносторонних треугольников. Углы А1ОВ и А4ОС равны как вертикальные. Аналогично для треугольников ВА2О и СА5О.
Т. Е. обе части 6-угольника целиком равны.