1 случай Если х² - 4х - 4≥0, то |x² - 4x - 4|= x²- 4x - 4 Уравнение принимает вид: x²- 4x - 4 + 4 = 2х, х² - 6х = 0, х·(х - 6) = 0 х₁=0 или х₂=6 Можно решить неравенство х² - 4х - 4≥0 и проверить входят ли корни в множество решений неравенства. А можно просто подставить корни в неравенство: при х₁=0 получаем неравенство 0²-4·0-4≥0, которое неверно, так как -4≥0- неверно. Значит х₁=0 не является корнем уравнения при х₂=6 получаем неравенство 6²-4·6-4≥0, которое верно 36-24-4=8, 8≥0 х₂=6- корень уравнения в 1) случае.
2 случай Если х² - 4х - 4<0, то |x² - 4x - 4|= -(x²- 4x - 4) Уравнение принимает вид: -(x²- 4x - 4) + 4 = 2х, -х² +4x +4+4-2x = 0, -х² +2x+8 = 0, x² - 2x - 8 = 0, D=(-2)² - 4·(-8)=4+32=36 х₃ = (2-6)/2 = -2 или х₄=(2+6)/2=4 Проверим, удовлетворяют ли корни х₃ = -2 и х₄=4 неравенству х² - 4х - 4<0
при х₃= - 2 получаем неравенство (-2)²-4·(-2)-4 < 0, которое неверно, так как 4+8-4=8, 8 < 0- не верно, Значит х₃=- 2 не является корнем уравнения
при х₄= 4 получаем неравенство 4²-4·4-4 < 0, которое верно 16-16-4=-4, -4 < 0 Значит х₄=4 является корнем уравнения
x=4 корень уравнения во втором случае. ответ. 4 ; 6
Обозначим весь путь за х Так как при скорости 3 км/ч он опоздает на 40 мин=2/3 ч то время отправления поезда (х/3 - 2/3) ч Так же мы знаем что он ускорился пройдя 1 час со скоростью 3 км/ч , и его скорость на остальном участке пути стала 4 км/ч и он пришел раньше отправления на 45 мин= 3/4 ч , т.е. поезд отправляется (1+(х-3)/4 + 3/4) ч Приравняем эти два времени , получаем : х/3 - 2/3=1+(х-3)/4 + 3/4 Решаем это уравнение (х-2)/3=(х+1) /4 + 3/4 (х-2)/3=(х+4) /4 (х-2)*4=(х+4)*3 4х-8=3х+12 х=20 Значит расстояние от деревни до станции равно 20 км ответ:20 км
10y+14y-20y-3y=15+4
y=19
ОТВЕТ:Y=19