x₁=-1; x₂=5, x₃,₄=1±2√2
Пошаговое объяснение:
Это уравнение 4-ой степени которое можно решить обычным разложением на множители после нахождения пары корней методом угадывания. Но это долго и не всегда эффективно
Это уравнение вида f(f(x))=x, которое равносильно уравнению f(x)=x, при условии что функция f(x) монотонно возрастает. Но это не так.
И всё же. Корни уравнения f(x)=x при любом f(x) являются корнями уравнения f(f(x))=x.
Док-во.
Пусть x₀ корень уравнения f(x)=x. Тогда f(x₀)=x₀
f(f(x₀))=f(x₀)=x₀
Значит x₀ также и корень уравнения f(f(x))=x.
Это всё теория. Переходим к решению.
Рассмотрим функцию f(x)=x² - 3x - 5(парабола, нет условия монотонного возрастания)
f(f(x))=(f(x))² - 3(f(x)) - 5=(x² - 3x - 5)² - 3(x² - 3x - 5) - 5
f(f(x))=x
Находим корни уравнения f(x)=x
x² - 3x - 5=x
x² - 4x - 5=0
D=36
x=2±3
x₁=-1; x₂=5
После нахождения пары корней уравнения 4-ой степени не сложно найти и остальные.
(x² - 3x - 5)² - 3(x² - 3x - 5) - 5 = x
x⁴+9x²+25-6x³-10x²+30x-3x²+9x+15-5-x=0
x⁴-6x³+9x²-10x²-3x²+30x-x+9x+15-5+25=0
x⁴-6x³-4x²+38x+35=0
x⁴-6x³-4x²+38x+35=(x²-4x-5)P(x)
x⁴-6x³-4x²+38x+35=(x⁴-4x³-5x²)-(2x³-8x²-10x)-(7x²-28x-35)=
=x²(x²-4x-5)-2x(x²-4x-5)-7(x²-4x-5)=(x²-4x-5)(x²-2x-7)
(x²-4x-5)(x²-2x-7)=0
x₁=-1; x₂=5
x²-2x-7=0
x₃,₄=(2±4√2)/2=1±2√2
ответ: 334
Пошаговое объяснение:
Все ждал пока детки добавят решение, но ладно уж, добавлю сам.
Как я понял, в условии предполагается, что числа должны быть различны, ибо возникает деление на 0.
Предположим, что в таком наборе существуют два числа a и b (a>b), разность которых равна 1, но тогда a+b делится на a-b, ибо a-b = 1.
Мы пришли к противоречию, такое невозможно.
Предположим теперь, что в таком наборе существует два числа a и b (a>b), разность которых равна 2. Два числа, разность которых равна 2 имеют одинаковую четность, а значит их сумма a+b является четной, то есть делится на их разность a-b = 2.
Мы пришли к противоречию, такое невозможно.
Таким образом, если данный набор упорядочить в порядке возрастания, то разность между соседними числами в данном наборе не менее 3.
Пусть в данном наборе n членов, тогда с учетом вышесказанного должно выполняться неравенство:
1+3(n-1) <=1000
3(n-1)<=999
n-1 <=333
n<=334
То есть в таком ряду не более 334 членов.
Покажем набор с 334 членами.
Возьмем все числа, что при делении на 3 дают остаток 1 и не более 1000:
1,4,7,10,13..., 1000 = 1+3*333 , то есть как раз 334 числа.
Возьмем любые два числа a и b (a>b) из данного набора.
Поскольку числа a и b дают при делении на 3 остаток 1, то их сумма a+b дает при делении на 3 остаток 2, то есть не делится на 3, однако их разность a-b дает при делении на 3 остаток 0, то есть делится на 3, а значит сумма a+b не может делится на разность a-b, то есть данный набор удовлетворяет условию задачи.