∠A= 20°
Пошаговое объяснение:
∠BFC = 70° так как он накрест лежащий ∠DFE
∠BFD = ∠CFE как накрест лежащие
сумма углов при пересечении 2 прямых 360°⇒
∠BFD = (360°-∠BFC+∠DFE )/2
∠BFD = (360°-70+70 )/2
∠BFD = 110°
∠CFE = 110°
сумма углов треугольника 180° ⇒
∠BDF = 180-∠DBF+∠BFD
∠BDF = 180-30+110
∠BDF = 40°
сумма углов треугольника 180° ⇒
∠FEC = 180-∠ECF+∠CFE
∠FEC = 180-20+110
∠FEC = 50°
смежные углы в сумме 180°⇒
∠ADF = 180-∠BDF
∠ADF = 180-40
∠ADF = 140°
∠AEF = 180-∠FEC
∠AEF = 180-50
∠AEF = 130°
сумма углов четырехугольника ADFE = 360°⇒
∠A= 360-∠AEF+∠DFE+∠ADF
∠A= 360-(130+70+140)
∠A= 20°
1,7х=-34,85
х=-34,85:1,7
х=-20,5
б) 6 3/7*y=1 6/7*4,5
45y/7=45/10*13/7
45y/7=585/70
3150y=4095
y=1,3