Пошаговое объяснение:Определите верно ли данное высказывание
Множество целых чисел обозначается - Z. (да)
7ϵ N. (да)
Каждое рациональное число может быть представлено в виде бесконечной десятичной периодической дроби. (да)
⅓= 0,(3). (да)
8/9 >9/10. (да), т.к. 80/90> 81/90
– 3,192 > -3,193. (да)
1/7- можно представить в виде конечной десятичной дроби. (нет)
N ⊂ Z. (да)
Множество натуральных чисел обозначается - N. (да)
Q ⊂ N. (нет)
Всякое рациональное число можно представить в виде дроби ,
где m ϵ Z, n ϵ N. (да)
Множество целых чисел состоит из натуральных чисел и чисел им противоположных. (нет)
7/14 = 1/2 = 0,5. (да)
Целые и дробные числа составляют множество целых чисел. (нет)
Множество рациональных чисел обозначается – R.
37/5=7,4
Не существует числа, удовлетворяющего этому неравенству 1,3 < х < 1,4 . (нет), например 1,3<1,35<1,4
Запись М ⊂ Р, читают «Р подмножество М». (да)
-211 ∉ Z. (нет)
1/8 < 10/75 < 1/7 . (да)
2,5х - 2 склад
(х+180) - 1 склад после того, как привезли 180 тонн
(2,5х+60) - 2 скал, после того, как привезли 60 тонн
т.к. на складах стало поровну, то:
х + 180 = 2,5х + 60
х - 2,5х = 60 - 180
-1,5х = -120
х = 80 (тонн) - 1 склад
80 * 2,5 = 200 (тонн) - 2 склад
ответ: 80 тонн, 200 тонн