делаем рисунок. Проведем диагонали ВD и АС ромба. Соединим середины сторон a,b,c,d попарно. Получившийся четырехугольник - прямоугольник, т.к. его стороны, являясь средними линиями треугольников, на которые делит ромб каждая диагональ - параллельны диагоналям ромба - основаниям этих треугольников.А диагонали ромба пересекаются под прямым углом,и поэтому углы четырехугольника также прямые. Сумма углов параллелограмма ( а ромб - параллелограмм), прилегающих к одной стороне, равна 180° Так как тупой угол ромба равен 120°, острый равен 60° Пусть меньшая диагональ d, большая -D Диагональ d равна стороне ромба, так как образует с двумя сторонами ромба равносторонний треугольник ABD с равными углами 60° . Большая диагональ D в два раза длиннее высоты АО равностороннего треугольника AB. АО равна стороне ромба АВ, умноженной на синус угла 60° АО=4v3:2=2v3 D=АС=4v3 Стороны прямоугольника ( на рисунке красного цвета) равны: ширина ab равна половине BD и равна 2 см длина bc равна половине АС и равна 2v3 см S abcd=2*2v3=4v3
Предположим, что потеряно не более 10 гирек. Тогда при возвращении на место этого количества получится вес, кратный 5+24+43=72. Числа вида 6060...60 при делении на 72 могут давать в остатке 60, 12 или 36, что проверяется непосредственно. Тут будет период 3, так как числа 60606060 и 60 сравнимы по модулю 72 -- их разность делится и на 8, и на 9. Таким образом, добавленный вес должен иметь вид 12+72k, 36+72k или 60+72k. Остаток от деления на 24 здесь везде равен 12. Осталось показать, что при или менее гирек из набора такой вес не набирается. Чтобы не перебирать много вариантов, заменим числа 5, 24, 43 на 5, 0, -5 по модулю 12. Если x, y, z -- число потерянных гирек каждого из видов, то 5(x-z) кратно 12, а потому и x-z. Значит, x=z, так как x+y+z<=10. Теперь рассмотрим всё по модулю 24, заменяя наши числа на те же: 5, 0, -5. Ввиду x=z, окажется, что суммарный потерянный вес делится на 24. Это приводит к противоречию. Заметим, что 11 гирек также не могло быть потеряно, а пример с 12 потерянными легко строится (было по 85 гирек каждого веса, а потом 12 гирек весом 5 г потеряли).
Итого получается 6 чисел