7. Из условия задачи - курицы у нас все разные. Т.е. если у нас мы возьмем какой-то набор птиц, в котором есть курица; и заменим эту курицу на другую, то получится другой набор.
В таком понимании задачи, всего различных комбинаций птиц - 512 (учитывая комбинацию без птиц вовсе, каждую птицу можно взять или не взять, птиц всего 9, 2^9 вариантов). Воспользуемся кругами Эйлера к этой задаче: пусть круги означают кол-во комбинаций БЕЗ указанных птиц. (рисунок второй)
БЕЗ гусей у нас 2^7 = 128 вариантов
БЕЗ кур - 64, а БЕЗ уток - 32 варианта.
Далее, найдем кол-во комбинаций без гусей И без уток, без гусей И без кур, без кур И без уток. Без всех птиц у нас 1 единственная комбинация. Используя это, найдем кол-во вариантов для каждого из подмножества. Далее, вычтем из 512 все эти подмножества. Получим кол-во вариантов, где точно есть и утки, и гуси, и куры.
ответ: 315
8. Легче будет объяснить на кругах Эйлера. (рисунок первый) Черным маркером я отметил кол-во студентов, каждого из самых маленьких подмножеств. сначала нашел (А и С и не В), (В и С и не А), (А и В и не С). Далее нашел тех, кто изучает только А, и только В. Затем нашел (А или В) и отнял из кол-ва студентов.
ответ: 200 - 120 = 80
9. Кол-во вариантов выбрать 5 карт для первого набора:
Для второго, из оставшихся:
Для третьего:
И для четвертого:
Т.к. порядок наборов нам не важен, ответ будет:
Пошаговое объяснение:
Пошаговое объяснение:
Длина окружности
Формула длины окружности радиуса r или диаметра d = 2r имеет вид:
или
где \pi \approx 3,14 – число «пи».
Примеры решения задач
ПРИМЕР 1
Задание Найти длину окружности диаметра 1,5 см.
Решение Для нахождения длины заданной окружности воспользуемся формулой l = \pi d. Подставляя в неё значение d = 1,5 см, получим
l = 1,5 \cdot \pi = 1,5 \pi (см)
Учитывая, что \pi \approx 3,14 окончательно имеем:
l = 1,5 \pi \approx 1,5 \cdot 3,14 = 4,71 (см)
ответ Длина окружности равна l = 1,5 \pi см или l \approx 4,71 см.
Контрольные работы на заказ
Решаем контрольные по всем предметам. 10 лет опыт! Цена от 100 руб, срок от 1 дня!
Онлайн заказЦены и сроки
Нужно решить задачи?
Решаем задачи любой сложности от 1 дня! Недорого и точно в срок. Заказывай!
Наши услугиБыстрый заказ
ПРИМЕР 2
Задание Найти длину окружности, вписанную в правильный треугольник со стороною 4 \sqrt{3} см.
Решение Сделаем рисунок (рис. 2).
По условию a = 4 \sqrt{3} см. Сторона правильного треугольника связана с радиусом вписанной в него окружности следующим соотношением:
\[ r=\frac{a}{2 \sqrt{3}} \]
Подставляя в последнее равенство заданное значение стороны правильного треугольника a = 4 \sqrt{3} см, найдем радиус вписанной окружности:
(см)
Длину окружности найдем по формуле:
\[ l=2 \pi r \]
Подставляя в неё найденное значение радиуса, будем иметь:
l = 2 \cdot 2 \cdot \pi = 4 \pi (см)
Если так же подставить \pi \approx 3,14, окончательно получим:
l = 4 \pi \approx 4 \cdot 3,14 = 12,56 (см)
ответ l = 4 \pi см или l \approx 12,56 см.
50 грибов = (28-27)+(50-28)=1+22=23 рыжика
Грузди
50грибов = (24-23)+(50-24)=1+26=27 груздей