М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
s1138285
s1138285
22.11.2021 09:01 •  Математика

На следственном факультете московского университета мвд россии учатся 1500 курсантов. из них 1300 отлично владеют приемами рукопашного боя, 1000 – стреляют на отлично. и только 100 курсантов имеют посредственные оценки по стрельбе и по владению приемами рукопашного боя. сколько курсантов отлично стреляют и владеют приемами рукопашного боя?

👇
Ответ:
TigerTanya
TigerTanya
22.11.2021
1500 - 100 = 1400 курсантов имеют отличные оценки хотя бы по одному предмету.
1300 + 1000 = 2300 курсантов
2300 - 1400 = 900 курсантов и отлично стреляют, и отлично владеют рукопашным боем.
ответ: 900.
4,8(33 оценок)
Открыть все ответы
Ответ:
Serebrennikova217
Serebrennikova217
22.11.2021
Улус предложил решение задачи в той же статье, где он и опубликовал саму задачу. Он заявил, что первым вопросом мы должны найти бога, который не является богом случая, то есть является либо богом правды, либо богом лжи. Есть множество вопросов, которые могут быть заданы для достижения этой цели. Одна из стратегий — использование сложных логических связей в самом вопросе.
Вопрос Булоса: "Означает ли «da» «да», только если ты бог правды, а бог B — бог случая?". Другой вариант вопроса: «Является ли нечётным числом количество правдивых утверждений в следующем списке: ты — бог лжи, „ja“ обозначает „да“, B — бог случая?»
Решение задачи может быть упрощено, если использовать условные высказывания, противоречащие фактам (counterfactuals)[4][5]. Идея этого решения состоит в том, что на любой вопрос Q, требующий ответа «да» либо «нет», заданный богу правды или богу лжи:
Если я с тебя Q, ты ответишь «ja»?результат будет «ja», если верный ответ на вопрос Q это «да», и «da», если верный ответ «нет». Для доказательства этого можно рассмотреть восемь возможных вариантов, предложенных самим Булосом:
Предположим, что «ja» обозначает «да», а «da» обозначает «нет»:Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «да».Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «нет».Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «da». То есть правильный ответ на вопрос «ja», который обозначает «да».Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «ja». То есть правильный ответ на вопрос «da», который обозначает «нет».Предположим, что «ja» обозначает «нет», а «da» обозначает «да»:Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «да».Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «нет».Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «ja». Но, так как он лжёт, верный ответ на вопрос Q — «da», что означает «да».Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «da». Но, так как он лжёт, верный ответ на вопрос Q — «ja», что означает «нет».Используя этот факт, можно задавать вопросы:[4]
Спросим бога B: «Если я с у тебя „Бог А — бог случая?“, ты ответишь „ja“?». Если бог B отвечает «ja», значит, либо он бог случая (и отвечает случайным образом), либо он не бог случая, а на самом деле бог A — бог случая. В любом варианте, бог C — это не бог случая. Если же B отвечает «da», то либо он бог случая (и отвечает случайным образом), либо B не бог случая, что означает, что бог А — тоже не бог случая. В любом варианте, бог A — это не бог случая.Спросим у бога, который не является богом случая (по результатам предыдущего вопроса, либо A, либо C): «Если я с у тебя: „ты бог случая?“, ты ответишь „ja“?». Поскольку он не бог случая, ответ  «ja» обозначает, что он бог правды, а ответ «da» обозначает, что он бог лжи.Спросим у этого же бога «Если я у тебя с Бог B — бог случая?“, ответишь ли ты „ja“?». Если ответ «ja» — бог B является богом случая, если ответ «da», то бог, с которым ещё не говорили, является богом случая.Оставшийся бог определяется методом исключения.
4,6(10 оценок)
Ответ:
milana20123
milana20123
22.11.2021
Я предлагаю действовать перебором. Числитель не может быть меньше 10 (т.к. двузначный). Если он 10, то после вычитания станет 9, тогда знаменатель должен стать (после удвоения) 99 (чтобы дробь стала быть равной 1/11). Но никакое целое число после удвоения не равно 99, значит 10 в качестве числителя не подходит. Берём 11. После вычитания 1 станет 10. Значит знаменатель станет 110 (опять чтобы получилось 1/11)Чтобы он (знаменатель) стал 110, первоначально он должен быть 55. Т.е. дробь 11/55 нам подходит, т.к. после преобразований она становится 10/110 = 1/11. Рассуждая дальше, найдём ещё такие числа, например 13/66 - тоже подходит, и оно меньше, чем 11/55, дальше 15/77 и оно ещё меньше, 17/88 - следующее и 19/99 - последнее, т.к. дальше пойдут трёхзначные знаменатели. И эта последняя дробь наименьшая из всех. Значит она и есть ответ. И сумма числителя и знаменателя 118
4,7(40 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ