Пошаговое объяснение:
Чтобы записать смешанную периодическую дробь в виде обыкновенной, надо из числа, стоящего до второго периода вычесть число, стоящее до первого периода, результат записать в числителе; в знаменатель записать число, содержащее столько девяток, сколько цифр в периоде, и столько нулей в конце, сколько цифр между запятой и периодом.
1) 2,1(6)- в числителе ставим 16-1, знаменателе ставим 90, т.к. до периода 1 цифра ее меняем на 9 и в периоде 1 цифра ее меняем на 0, получим
=2 (16-1)/90=2 15/90=2 1/6
2) 5,14(33)= здесь в числителе будет 1433-14, а в знаменателе 9900
5 (1433-14)/9900= 5 1419/9900=5 43/300
3) 0,11(35)= числитель 1135-11, знаменатель 9900
(1135-11)/9900=1124/9900=281/2475
4) 0,214(45)=числитель 21445-214, знаменатель 99000
(21445-214)/99000=21231/99000=2359/11000
Пошаговое объяснение:
Чтобы записать смешанную периодическую дробь в виде обыкновенной, надо из числа, стоящего до второго периода вычесть число, стоящее до первого периода, результат записать в числителе; в знаменатель записать число, содержащее столько девяток, сколько цифр в периоде, и столько нулей в конце, сколько цифр между запятой и периодом.
1) 2,1(6)- в числителе ставим 16-1, знаменателе ставим 90, т.к. до периода 1 цифра ее меняем на 9 и в периоде 1 цифра ее меняем на 0, получим
=2 (16-1)/90=2 15/90=2 1/6
2) 5,14(33)= здесь в числителе будет 1433-14, а в знаменателе 9900
5 (1433-14)/9900= 5 1419/9900=5 43/300
3) 0,11(35)= числитель 1135-11, знаменатель 9900
(1135-11)/9900=1124/9900=281/2475
4) 0,214(45)=числитель 21445-214, знаменатель 99000
(21445-214)/99000=21231/99000=2359/11000
Применим правило производной частного:ddx(f(x)g(x))=1g2(x)(−f(x)ddxg(x)+g(x)ddxf(x))f(x)=3x и g(x)=x2+1.Чтобы найти ddxf(x):Производная произведения константы на функцию есть произведение этой константы на производную данной функции.В силу правила, применим: x получим 1Таким образом, в результате: 3Чтобы найти ddxg(x):дифференцируем x2+1 почленно:Производная постоянной 1 равна нулю.В силу правила, применим: x2 получим 2xВ результате: 2xТеперь применим правило производной деления:−3x2+3(x2+1)2Теперь упростим:−3x2+3(x2+1)2ответ:(−3x²+3)/(x²+1)²
Критические точки находим, приравнивая производную нулю:
дробь равна 0, если числитель равен 0.
-3(х² - 1) = 0
х² = 1
х = +-1.
Получили 2 критические точки.
Для выяснения минимума и максимума надо определить знак производной вблизи критических точек. Для этого надо подставить значения х левее и правее полученных точек.
Получаем: х = -1 - это локальный минимум функции, х = 1 - это локальный максимум функции.
ответ: -∞<x<-1; 1<x<∞ - функция убывающая
-1<x<1 - функция возрастающая.
Подробное решение и график функции приведен в приложении.