Используем формулу cos α - sin α = √2sin((π/4)-α). cos15° - sin 15° = √2sin(45° - 15°) = √2sin 30° = √2 / 2. Это и есть число а, оно положительное и равно 0.707107.
При каждом броске с равной вероятностью может выпасть 6 различных чисел, поэтому, число всех возможных событий при двух бросках равно 6*6=36. Благоприятными для нас событиями являются события, при которых в первый раз выпадет 5, а во второй раз выпадет любое число, кроме 6 (5 событий) и события, при которых во второй раз выпадет 5, а в первый раз выпадет любое число, кроме 6 (5 событий). Число всех благоприятных событий равно 5+5-1=9; нужно отнять 1, так как дважды посчитано событие, при котором два раза выпадет число 5. Искомая вероятность равна отношению числа благоприятных событий к числу всех возможных событий, т.е.
При каждом броске с равной вероятностью может выпасть 6 различных чисел, поэтому, число всех возможных событий при двух бросках равно 6*6=36. Благоприятными для нас событиями являются события, при которых в первый раз выпадет 5, а во второй раз выпадет любое число, кроме 6 (5 событий) и события, при которых во второй раз выпадет 5, а в первый раз выпадет любое число, кроме 6 (5 событий). Число всех благоприятных событий равно 5+5-1=9; нужно отнять 1, так как дважды посчитано событие, при котором два раза выпадет число 5. Искомая вероятность равна отношению числа благоприятных событий к числу всех возможных событий, т.е.
cos15° - sin 15° = √2sin(45° - 15°) = √2sin 30° = √2 / 2.
Это и есть число а, оно положительное и равно 0.707107.