От треугольной призмы, объем которой равен 15, отсечена треугольная пирамида плоскостью, проходящей через сторону одного основания и противоположную вершину другого основания. найдите объем оставшейся части.
Высота и основание у пирамиды и призмы одно и то же V(призмы)=H·S(основания)=15 V(пирамиды)=(1/3)H·S(основания)=5 V(оставшейся части)=V(призмы)-V(пирамиды)=10 ответ:10
Пусть петухов будет х (единиц) , а уток - у (единиц) . Тогда х + 10х + у = 21. Или 11х +у = 21; или у = 21 - 11х. Число у может быть только целым, как и х. Будем подставлять натуральные числа, начиная с наименьшего. Предположить, что х = 0, нельзя, так как петухи все таки были! Предположим, что х = 1. Тогда у = 21 - 11*1 = 10. Возможно. Предположим, х = 2, тогда у = 21 - 11*2 = 21 - 22 = -1. Число петухов не может быть отрицательным, поэтому х не может быть равным 2. Остальные предположения ( х = 3, 4, и так далее) тоже дадут отрицательный результат. Поэтому, х = 1 есть единственное решение уравнения у = 21 - 11*1 = 10 в целых положительных числах. Поэтому петухов было 1 (один) , кур - 10, уток - 10.
Пусть петухов будет х (единиц) , а уток - у (единиц) . Тогда х + 10х + у = 21. Или 11х +у = 21; или у = 21 - 11х. Число у может быть только целым, как и х. Будем подставлять натуральные числа, начиная с наименьшего. Предположить, что х = 0, нельзя, так как петухи все таки были! Предположим, что х = 1. Тогда у = 21 - 11*1 = 10. Возможно. Предположим, х = 2, тогда у = 21 - 11*2 = 21 - 22 = -1. Число петухов не может быть отрицательным, поэтому х не может быть равным 2. Остальные предположения ( х = 3, 4, и так далее) тоже дадут отрицательный результат. Поэтому, х = 1 есть единственное решение уравнения у = 21 - 11*1 = 10 в целых положительных числах. Поэтому петухов было 1 (один) , кур - 10, уток - 10.
V(призмы)=H·S(основания)=15
V(пирамиды)=(1/3)H·S(основания)=5
V(оставшейся части)=V(призмы)-V(пирамиды)=10
ответ:10