Заметим что если бы монет было кратно 6 то выигрывает второй игрок Всегда Если первый ход 1 то второй 5, первый 3 второй 3, первый 5 второй 1
Но к сожалению 2018 не делится на 6, а целиком на 6 делится или 2016 или 2010
И нам надо рассмотьреть тактику как нам довести до числа кратному 6
Рассмотрим 2016. остается 2 монеты до кратного 6 числа - но пока непонятно как играть можно взять и 1 и 3 и 5 монет
Рассмотрим второе число 2010 остается 2018-2010=8 монет
И тут можно показать стратегию Если лиса берет 1 то Кот берет 1 и мы попадаем на 2016 оставшихся монет и побеждает Кот как второй
Если Лиса берет или 3 или 5 то Кот берет 5 и 3 соответственно и попадаем на 2010 оставшихся монет. И снова побеждает Кот как второй
ответ Побеждает всегда второй или Кот
Решение во вложении.
Для решения неравенства грфически вам нужно преобразовать его в функцию f(x)=(...), построить графики данных уравнений, а затем определить, в какой из плоскостей, ограничиваемых графиком, находится нужное множество решений. Для прямой - слева или справа, для параболы - внутри неё или снаружи. Для этого берём любую точку из перечисленных областей и подставляем в неравенство. Если оно верное, зашриховываем выбранную зону. Если нет - противоположную ей область. Для прямой это оказалась область справа от неё, а для параболы - внутри. Затем ищем пересечение штриховок. Это ответ.
Обратите внимание: графическим решением неравенства при строгом знаке (> или <) является ТОЛЬКО определённая вами область, высекаемая графиком. Если знаки нестрогие (<= или >=), то точки самого графика тоже принадлежат множеству решений системы.
Обращаю внимание: я нарисовала новый чертёж с ответом отдельно. Это делать необязательно, достаточно просто хорошо прорисовать область решений на первом чертеже.