Х- скорость пешехода из А у- Скорость пешехода из В , из условия задачи имеем : (х + у ) -столько проходят оба пешехода за 1 час 27/(х+ у) = 3 27 = 3(х+ у) 9 = х + у х = 9 - у 27/у - 27/х = 1 21/60 27/у - 27/х = 81/60 1/у - 1/х =3/60 1/у -1/х = 1/20 , умножим на 20ху , получим 20х -20у = ху , полученное значение х из первого уравнения подставим во второе уравнение : 20(9 - у) -20у = (9 - у) * у 180 -20у -20у = 9у - у^2 y^2 -49y +180 =0 , найдем дискриминант уравнения = 49*49 - 4*1*180 = 2401- 720 = 1681 .Найдем корень квадратный из дискриминанта . Он равен =41 . Найдем корни уравнения : 1-ый = (-(-49)+41)/2*1 = 90/2 = 45 2-ой = (-(-49)-41) /2*1 = 8/2= 4 . Первый корень не подходит : слишком большая скорость для пешехода . Значит скорость пешехода из В ровна = 4км/ч .Из первого уравнения найдем скорость пешехода из А,она равна= х= 9 -у = 9-4 = 5 км/ч
Пусть количество грубых ошибок равно х, а не грубых - у. Перепишем условия задачи, используя это: 1) x≥1/4*(x+y)/*4 4x≥x+y 3x≥y 2) 3x=(y+2*36)/5
Так как 3x≥y и 3x=(y+72)/5, то (y+72)/5≥y/*5 y+72≥5y 72≥4y/:4 y≤18
С одной стороны, так как 3x≥y и y=15x-72, тогда 3x≥15x-72 72≥12x/:12 x≤6
С другой стороны, получается система неравенств x≤6, y≤18. Из этого следует, что x+y≤24. Так как МИНИМАЛЬНОЕ количество человек, написавших диктант без ошибок будет при условии, что каждый ученик допустит по одной ошибке. Наибольшее количество грубых ошибок равно 6, а не грубых - 18. Проверим, выполняется ли при этих значениях условие задачи: 15x=y+72, 15*6=18+72, 90=90 Значит, данные значения являются решением данной задачи. Всего учеников было 36, без ошибок напишут 36-18-6=12 человек.
Закоптили 1 - 5/8 = 3/8 всей рыбы.
80 * 3/8 = 10 * 3 = 30 лещей закоптили.