Дано разложение на простой множители чисел а и б найдите наибольший общий делитель этих чисел: 1)а= 2*3*5 и б= 2*2*3*5 2)а=2*3*3*5 и б=2*3*3*7 3)а=2*3*5*5 и б=3*3*5*5
Треугольник ABCABC является остроугольным, так как 62<42+5262<42+52. Отсюда следует, что основания высот находятся на сторонах, а не на их продолжениях. Опустим высоту AA1AA1, и пусть она делит отрезок BCBC на части длиной xx и yy. С одной стороны, x+y=5x+y=5. С другой стороны, ввиду теоремы Пифагора, применённой к треугольникам ACA1ACA1 и ABA1ABA1 с общей высотой, 62−x2=AA21=42−y262−x2=AA12=42−y2. Следовательно, x2−y2=20x2−y2=20, то есть x−y=20/5=4x−y=20/5=4, откуда x=9/2x=9/2 и y=1/2y=1/2. Последнее означает, что K=A1K=A1, то есть треугольник ABKABK прямоугольный, и центр описанной около него окружности является серединой гипотенузы ABAB.Теперь опустим высоту BB1BB1, и тем же методом найдём CB1=15/4CB1=15/4, B1A=9/4B1A=9/4. Из этого следует, что MB1=15/4−27/8=3/8MB1=15/4−27/8=3/8, что составляет 1/101/10 от CB1CB1. Точно так же, KBKB составляет 1/101/10 от CBCB. Из этого можно сделать вывод, что прямые KMKM и BB1BB1 параллельны, а потому треугольник AKMAKM также прямоугольный. И центр описанной около него окружности есть середина гипотенузы AKAK.Таким образом, dd есть длина средней линии треугольника ABKABK, откуда d=BK/2=1/4d=BK/2=1/4.
Правило чтения многозначных чисел: многозначные числа читают слева направо. Сначала разбивают число на классы, отсчитывая справа по 3 цифры. называют все цифры, кроме нуля, Цифра 0 в записи числа означают отсутствие разряда. Умножение чисел на 11-устные приемы. 1-ый Чтобы двузначное число, сумма цифр которого не превышает 10, умножить на 11, надо цифры этого числа раздвинуть и поставить между ними сумму этих цифр. Примеры: 27 х 11= 2 (2+7) 7 = 297; 62 х 11= 6 (6+2) 2 = 682. 2-ой Чтобы умножить на 11 двузначное число, сумма цифр которого 10 или больше10, надо мысленно раздвинуть цифры этого числа, поставить между ними сумму этих цифр, а затем к первой цифре прибавить единицу, а вторую и последнюю (третью) оставить без изменения. Пример: 86 х 11= 8 (8+6) 6 = 8 (14) 6 = (8+1) 46 = 946. Есть ещё один умножения на 11 больших чисел: чтобы умножить число на 11, к нему приписывают 0 и прибавляют исходное число. Например: 345 х 11 = 3450 + 345 = 3795; 4215 х 11 = 42150 + 4215 = 46365.