Участок прямоугольной формы, ширина которого в 2 раза меньше длины засеяны овсом. периметр участка 1140 м. 1/2 убрали комбайном. сколько квадратных метров участка осталось убрать?
Трапеция АВСД, высота ВН пересекает диагональ АС в точке О, при этом ВО =10, ОН=8.; АВ =ВС=х по условию, значит треугольники АОН и СОВ подобны по двум углам (так как угол ВАС =углу ВСА и углы при вершине О равны как вертикальные) Из подобия треугольников следует пропорция ВС/АН=ВО/ОН, т.е х/АН=10/8,значит АН= 4х/5 и всё нижнее основание АД= 4х/5+х+4х/5, т.е АД=13х/5. Но из прямоугольного треугольника АВН по теореме Пифагора АВв квадрате = АН в квадрате + ВН в квадрате, т.е Х в квадрате = (4х/5)в квадрате + 18 в квадрате. Отсюда х=30. Тогда Верхнее основание ВС=30,нижнее АД= 13х/5=78 и площадь трапеции равна полусумме оснований умножить на высоту, т.е (78+30)/2 и умножить на 18, получится 972 ответ : 972
Трапеция АВСД, высота ВН пересекает диагональ АС в точке О, при этом ВО =10, ОН=8.; АВ =ВС=х по условию, значит треугольники АОН и СОВ подобны по двум углам (так как угол ВАС =углу ВСА и углы при вершине О равны как вертикальные) Из подобия треугольников следует пропорция ВС/АН=ВО/ОН, т.е х/АН=10/8,значит АН= 4х/5 и всё нижнее основание АД= 4х/5+х+4х/5, т.е АД=13х/5. Но из прямоугольного треугольника АВН по теореме Пифагора АВв квадрате = АН в квадрате + ВН в квадрате, т.е Х в квадрате = (4х/5)в квадрате + 18 в квадрате. Отсюда х=30. Тогда Верхнее основание ВС=30,нижнее АД= 13х/5=78 и площадь трапеции равна полусумме оснований умножить на высоту, т.е (78+30)/2 и умножить на 18, получится 972 ответ : 972
Периметр = 2*(х+2х)=6х и это = 1140 метров.
Значит, х=1140:6=190 м (ширина).
Длина участка вдвое больше, =2*190=380 м.
Теперь можно найти ПЛОЩАДЬ участка 190*380=72200 кв.м.
Половина его убрана и вторую половину осталось убрать - 72200:2=36100 кв.метров.