АВСД - трапеция вписанная в окружность ⇒ АВСД - равнобедренная трапеция. Точка пересечения диагоналей АС и ВД - точка М . Центр описанной окружности ,точка О,лежит на середине АД. ∠ВМД=∠СМД=80° (как вертикальные углы) ∠АВД и ∠АСД опираются на диаметр АД ⇒ они прямые, то есть ∠АВД=∠АСД=90°. ∠АМД=∠АМС-∠СМД=180°-80°=100° АМ=ДМ ⇒ ΔАМД- равнобедренный ⇒ ∠МАД=∠МДА=(180°-100°):2=40° ΔАВМ: ∠ВАМ=180°-90°-80°=10° ⇒ ∠ВАД=∠ВАМ+∠МАД=10°+40°=50° ∠ВДА=∠ВАД=50° ∠АВС=∠СДА=180°-50°=130° (т.к. ∠АВС и ∠ВАД соответственные углы)
Приведем данную гиперболу к каноническому виду: 2x^2-9y^2=18 x^2/9-y^2/2=1 x^2/3^2-y^2/(sqrt(2))^2=1 (примечание: sqrt - квадратный корень) Найдем вершины гиперболы: y=0 x^2/9=1 x^2=9 x1=3 x2=-3 точки (-3;0) и (3;0) - вершины гиперболы Найдем уравнение окружности, проходящей через точки (-3;0), (3;0) с центром в точке А(0;4): уравнение окружности с центром в точке (0;0) имеет вид x^2+y^2=R^2 (R - радиус окружности) центр заданной окружности смещен вдоль оси y вверх на 4, т.к. точка А имеет координаты (0;4): x^2+(y+4)^2=R^2 По теореме Пифагора найдем радиус окружности: R=sqrt((3-0)^2+(4-0)^2)=sqrt(9+16)=sqrt(25)=5
АВСД - равнобедренная трапеция.
Точка пересечения диагоналей АС и ВД - точка М .
Центр описанной окружности ,точка О,лежит на середине АД.
∠ВМД=∠СМД=80° (как вертикальные углы)
∠АВД и ∠АСД опираются на диаметр АД ⇒ они прямые,
то есть ∠АВД=∠АСД=90°.
∠АМД=∠АМС-∠СМД=180°-80°=100°
АМ=ДМ ⇒ ΔАМД- равнобедренный ⇒ ∠МАД=∠МДА=(180°-100°):2=40°
ΔАВМ: ∠ВАМ=180°-90°-80°=10° ⇒ ∠ВАД=∠ВАМ+∠МАД=10°+40°=50°
∠ВДА=∠ВАД=50°
∠АВС=∠СДА=180°-50°=130° (т.к. ∠АВС и ∠ВАД соответственные углы)