М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sonicbum
sonicbum
01.03.2022 23:57 •  Математика

Решение такого уровнения x+3x+5=17 как решить?

👇
Ответ:
azamaaaaa
azamaaaaa
01.03.2022
X+3x+5=17
4x+5=17
4x=17-5
4x=12
x=12:4
x=3
4,8(52 оценок)
Ответ:
Violetta2004w
Violetta2004w
01.03.2022
X+3x+5=17
4x+5=17
4x=17-5
4x=12
x=12:4
x=3
4,4(4 оценок)
Открыть все ответы
Ответ:
seetneek
seetneek
01.03.2022
5 и 2 — если число оканчивается на чётную цифру то оно делится на 2 например 396, если оканчивается на 5 и на 0 то оно делится на 5 и на 10 например 6570, 7595.
9 и 3 — если сумма Ц И Ф Р в числе делится на 3 то и число делится на 3 например 369 3+6+9=18 18:3=6
точно также с 9
Наибольший общий делитель – это наибольшее натуральное число, на которое делятся без остатков все его делители.
Чтобы найти НОД чисел нужно разложить их на простые множители и те множители которые совпадают нужно перемножить.
Например найдём НОД чисел 48 и 36
разложим их на простые множители:
48=2•2•2•2•3, 36=2•2•3•3
общие множители 2,2,3 умножим их: 2•2•3
получится 12. 12 является наибольшим общим делителем чисел 48 и 36
4,4(73 оценок)
Ответ:
GoldChery
GoldChery
01.03.2022
Покажем, что 101 девочки может не хватить. Если две их них враждуют со всеми, а остальные 99 дружат друг с другом, легко видеть, что не выполнится ни одно из условий задачи.

Теперь покажем, что 102 девочек обязательно хватит для выполнения одного из условий. Рассмотрим два случая:

Пусть существует 100 девочек, у каждой из которой есть не более 2 врагов среди других 99. Покажем, что их можно расположить так, как требуется в условии 1. Выберем произвольную девочку A₁, после этого выберем девочку A₂, которая дружит с A₁. Потом выберем девочку A₃, которая дружит с A₂. Так будем поступать, пока не выберем девочку A₉₈, которая дружит с A₉₇ (это всегда можно сделать, так как среди 3 оставшихся девочек хотя бы одна дружит с A₉₇). Теперь возможна ситуация, когда обе оставшиеся девочки враждуют с A₉₈. Это означает, что среди остальных девочек у A₉₈ нет врагов. Выберем среди предыдущих 97 девочек одну, которая не враждует с A₉₉ и поменяем её местами с A₉₈. Тогда мы сможем добавить девочку A₉₉ в конец цепочки. Таким образом, мы доказали, что всегда можно составить цепочку из 99 девочек, в которой каждая последующая дружит с предыдущей. Покажем, что туда можно добавить оставшуюся девочку. Если девочка A₁₀₀ не враждует ни с A₁, ни с A₉₉, добавим её и условие 1 выполнится. Если же она враждует хотя бы с одной из них, найдем среди девочек A₂..A₉₈ какую-то, которая не враждует ни с A₁, ни с A₉₉ (это возможно, поскольку у каждой девочки не более 2 врагов). Поменяем её местами с A₁₀₀ и поместим между A₁ и A₉₉, тогда условие 1 выполнится, что и требовалось.

Осталось рассмотреть случай, когда 100 девочек требуемым образом выбрать нельзя. Выберем девочек X и Y с наибольшим числом врагов и рассмотрим остальных 100 девочек. По условию, существует девочка Z, у которой есть не менее 3 врагов, не совпадающих с X и Y. Поскольку у девочки X врагов не меньше, чем у Z, существует девочка W, отличная от Y и Z, которая враждует с X. Кроме того, у девочки Z существуют хотя бы два врага U и V, отличные от X, W и Y. Рассмотрим 97 девочек, не упомянутых выше. Если среди них есть пара девочек P и Q, враждующих между собой, то две пары X,W; P,Q и тройка Z, U, V удовлетворяют условию 2. Если же такой пары нет, то все 97 девочек дружат друг с другом. Если у девочки Y есть враг Y', отличный от X,W,Z,U,V, то две пары X,W; Y,Y' и тройка Z,U,V удовлетворяют условию 1. Если такой пары нет, то у девочки Y не более 5 врагов, тогда и у всех девочек, кроме X, не более 5 врагов. Добавим девочек Z, U, V в группу из 97 дружащих друг с другом девочек. Обозначим девочку Z за A₁, какую-то из 97 девочек, не враждующую с Z и U, за A₂, девочку U за A₃, какую-то из оставшихся 96 девочек, не враждующую с U и V за A₄, девочку V за A₅, среди оставшихся 95 девочек выберем двух, одна из которых не враждует с Z, а вторая не враждует с V, обозначим их соответственно за A₁₀₀ и A₆. Остальных 93 девочек обозначим за A₇,..A₉₉ произвольным образом. Нетрудно видеть, что в этом случае выполняется условие 1, что и требовалось доказать.
4,5(72 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ