Выбираем систему координат так, чтобы её начало совпадало с положением автомобиля, находящегося в точке А. Уравнение его движения х 1 = v1t. Тогда уравнение движения второго автомобиля х 2 =x0 +v2t. В некоторый момент времени координаты движущихся автомобилей будут одинаковы х1 = х2. Тогда v1t. = x0 +v2t. ю Отсюда t = x0/(v1 - v2). Вычислим: t = 150/(70 - 40) = 5 (часов) . Подставим. Второй автомобиль двигался из точки В со скоростью 40 км/ч. За 5 ч от путь S = 40*5 = 200 (км) . Можно решить задачу и арифметически: 1). С какой скоростью первый автомобиль догоняет второго? 70 - 40 = 30 (км/ч). 2). За сколько времени он его догонит? 150: 30 = 5 (часов) . 3). На какое расстояние он удалится? 40*5 = 200 (км) . ответ: 200 км. через 5 часов.
Х - скорость теплохода 2х - скорость автобуса 6х - расстояние, которое проплыли на теплоходе (S=Vt) 3*2х=6х - расстояние, которое проехали на автобусе 6х+6х=270 12х=270 х=270:12 х=22,5 (км/час) скорость теплохода ответ: скорость теплохода равна 22,5 км/час
Или S=Vt, следовательно автобус за 3 часа пройдет столько же, сколько теплоход за 6 часов, так как скорость автобуса в 2 раза больше, чем у теплохода, а ехал он в 2 раза меньше (6 час:3 час=2). Тогда: 270 км:2=135 км и теплоход и автобус) 135 км:6 час=22,5 км/час (V=S:t) ответ: скорость теплохода 22,5 км/час
26-2=24(уч)
26+2=28(уч)
ответ: В первом классе 24 ученика, а во втором 28 учеников .