Пусть х человек играли в 10 часов утра в футбол, а у - баскетбол. Тогда х+у=28
Затем 7 человек, играющих в футбол, ушли со стадиона и осталось х-7 человек. 3 человека ушли из волейбола у-3 и отправились играть в футбол: х-7+3=х-4 человек стали играть в футбол.
Составим и решим систему уравнений (обозначьте скобками): х+у=28 х-4=(у-3)*2
Выразим х из первого уравнения: х=28-у Подставим его значение во второе уравнение: 28-у-4=(у-3)*2 24-у=2у-6 -у-2у=-6-24 -3у=-30 у=10 (человек) - играли в волейбол х=28-у=28-10=18 (человек) - играли в футбол. ответ: в 10 часов утра 18 человек играли в футбол.
Проведём осевое сечение пирамиды через ребро SC. Получим треугольник SCД. SД - апофема боковой грани, SД = √(5²-(4/2)²) = √(25-4) = √21. СД как высота равностороннего треугольника в основании пирамиды равно: СД = 4*cos30° = 4*(√3/2) = 2√3. В треугольнике SCД высота ДН на сторону SC является одновременно и высотой в треугольнике АНВ, который является заданным сечением. Найдём косинус угла С: cos C = (5²+(2√3)²-(√21)²)/(2*5*2√3)= 16/(20√30 = 4/(5√3). Тогда синус этого угла равен: sin C = √(1-cos²C) = √(1-(16/75)) = √59/(5√3). Высота ДН равна: ДН = СД*sin C= 2√3*(√59/(5√3)) = 2√59/5. Площадь заданного сечения равна: S = (1/2)*4* 2√59/5 = 4√59/5 = 6.1449166.