Стороны прямоугольника mnk равны 5 см , 10 см и 12см найдите стороны подобного треугольника с вершинами def зная что большая его сторона равна 6 см выпишите пары равных углов этих треугольников
Пусть большая сторона DE Тогда k ( коэффициент подобия) = DE : MN = 6 : 12 = 0.5 EF = NK*k = 10*0.5 = 5 cм DF = MN*k = 5*0.5 = 2.5 см Угол D = углу M Угол E = углу N Угол F = углу K
Для левой части ур-ия применим формулу суммы синусов: Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2) А для правой части формулы понижения степени: Cos² x = (1 + Cos 2x) / 2 Sin² x = (1 - Cos 2x) / 2
То есть: 2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2))
2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x
2Sin 4x · Cos x = Cos 4x + Cos 6x
Для правой части ур-ия применим формулу суммы косинусов: Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2)
2Sin 4x · Cos x = 2Cos 5x * Cos x
2Sin 4x · Cos x - 2Cos 5x * Cos x = 0
Выносим общий множитель 2Cos x: 2Cos x · (Sin 4x - Cos 5x) = 0
Отсюда: Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое
Sin 4x - Cos 5x = 0
Cos (π/2 - 4x) - Cos (5x) = 0
Применяем формулу разности косинусов: Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2)
То есть: -2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0
1) Sin ((π/2 + x)/2) = 0 (π/2 + x)/2 = πk π/2 + x = 2πk x = -π/2 + 2πk
Тогда k ( коэффициент подобия) = DE : MN = 6 : 12 = 0.5
EF = NK*k = 10*0.5 = 5 cм
DF = MN*k = 5*0.5 = 2.5 см
Угол D = углу M
Угол E = углу N
Угол F = углу K