1. 5,9,13,4, 27 (целые положительные числа - не дробные числа, которые больше нуля.) 2. 9, -9, -27,27, 13, -13 (противоположные числа - числа с противоположным знаком. 3. -30,-27, -9, -13 (не дробные числа меньше нуля) 0=-0=+0, поэтому не входит ни в одну из характеристик.
Запишем одз: так как 2>0 то достаточно чтобы x≠1 и х>0 Так же logx(2)=1/log2(x) Перепишем так систему (фигурная скобка):01, после возведения 2 в эту степень выйдет х>2(знаки сохраняются потому что 2^x больше если больше степень (если число между 0 и 1 то знаки пришлось бы менять но мы возводим 2 в степень)) Logx(2)<=-1 перепишем так -1<=log2(x)<0(если число меньше минус 1 то обратное между -1 и 0 а если число -1 то обратное -1) возводим 2 в эту степень 2^-1<=х<2^0(знаки сохраняются об этом уже говорилось) тогда 1/2<=х<1 Выходит объединение [1/2;1) и (2;+бесконечность) ответ объединение [1/2;1) и (2;+бесконечность)
2. 9, -9, -27,27, 13, -13 (противоположные числа - числа с противоположным знаком.
3. -30,-27, -9, -13 (не дробные числа меньше нуля)
0=-0=+0, поэтому не входит ни в одну из характеристик.