х=пи/2+пи*н , где н -любое целое.
Пошаговое объяснение:
sin2x=2sinx*cosx
cosx=0 одно из решений. х=пи/2+пи*н , где н -любое целое.
Если косинус х не равен 0, то поделим все на sqrt(cos(x)) (помня ОДЗ : косинус больше 0)
sin(x)*sqrt(cos(x))=sqrt(3)/2
Возведем в квадрат
(1-cos^2(x))*cos(x)=3/4
Обозначим косинус за у
у-y^3=3/4
y^3-y+3/4=0
Можно показать, что у этого уравнения один действительный корень и он меньше -1.(для этого надо построить график, изучить экстремумы и локализовать корень, если не пользоватья формулами Кардано).
Поэтому, ответ : х=пи/2+пи*н , где н -любое целое.
Найдем точки пересечения линий, для этого приравняем уравнения друг к другу:
x^2 - 1 = 2x + 2;
x^2 - 2x - 3 = 0;
x12 = (2 +- √(4 - 4 * (-3)) / 2 = (2 +- 4) / 2;
x1 = (2 - 4) / 2 = -1; x2 = (2 + 4) / 2 = 3.
Тогда площадь S фигуры ограниченной заданными линиями будет равна:
S = ∫(x^2 - 1) * dx|-1;1 +∫(2x + x) * dx|-1;3 - ∫(x^2 - 1) * dx|1;3
= 2 * (1/3x^3 - 1/2x^2)|0;1 + (x^2 + x)|-1;3 - (1/3x^3 - 1/2x^2)|1;3 = 1 + 8 - 1/6 = 8 5/6.
ответ: искомая площадь, образованная заданными линиями равна 8 5/6.
Пошаговое объяснение:
оно?
6000+у=13000
у=13000-6000
у=7000