М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sludkov
sludkov
05.05.2021 09:40 •  Математика

Урожай яблок составил 128кг которые расфосовали в ящики по 8кг.сколько потребывалось ящиков

👇
Ответ:
nika7912
nika7912
05.05.2021
128:8=16 ящиков потребовалось для фасовки
4,5(98 оценок)
Ответ:
128:8= 16 (шт) ящиков
4,5(96 оценок)
Открыть все ответы
Ответ:
fearsomehusky
fearsomehusky
05.05.2021

Уравнение №1.

x + 5/7 = -3/8 * 1 1/3

Выполним умножение в правой части уравнения(не забудь 1 1/3 перевести в неправильную дробь).

Получим:

x + 5/7 = -1/2

Чтобы найти неизвестное слагаемое, из суммы вычитаем известное слагаемое.

x = -1/2 - 5/7

Приводим дроби к общему знаменателю 14.

x = -7/14 - 10/14

x = -17/14

x = -1 3/14

Уравнение №2.

y - 7/12 = 3 1/2 * (-4/7)

И опять же выполним умножение справа.

y - 7/12 = -2

Чтобы найти неизвестное уменьшаемое, надо разность сложить с вычитаемым.

y = -2 + 7/12

Приведем дроби к общему знаменателю 12.

y = -24/12 + 7/12

y = -17/12 = - 1 5/12

Уравнение №3.

(- 6 2/3) * (-1 1/5) + x = -0,5

Теперь умножаем дроби слева.

Так как минус на минус дает плюс, мы имеем право сделать такую запись:

20/3 * 6/5 + x = -0,5

Перемножив дроби, получили хорошее уравнение:

8 + x = -0,5

Опять же, чтобы найти неизвестное слагаемое, из суммы вычтем известное слагаемое.

x = -0,5 - 8

x = -8,5

Уравнение №4.

Тут мы перемножим дроби и получим:

-3/10 - y = 15/4

И опять же, чтобы найти неизвестное вычитаемое, мы из разности вычтем уменьшаемое.

Получаем:

y = 15/4 -(-3/10)

y = 15/4 + 3/10

y = 75/20 + 6/20

y = 81/20

4,6(5 оценок)
Ответ:
Насятя28
Насятя28
05.05.2021

Это не честно!Задавать такую головоломку!Она между прочем считается самой сложной в мире!Но ладно я решу!

Булос предложил решение задачи в той же статье, где он и опубликовал саму задачу. Он заявил, что первым вопросом мы должны найти бога, который не является богом случая, то есть является либо богом правды, либо богом лжи. Есть множество вопросов, которые могут быть заданы для достижения этой цели. Одна из стратегий — использование сложных логических связей в самом вопросе.

Вопрос Булоса: "Означает ли «da» «да», только если ты бог правды, а бог B — бог случая?". Другой вариант вопроса: «Является ли нечётным числом количество правдивых утверждений в следующем списке: ты — бог лжи, „ja“ обозначает „да“, B — бог случая?»

Решение задачи может быть упрощено, если использовать условные высказывания, противоречащие фактам (counterfactuals)[3][4]. Идея этого решения состоит в том, что на любой вопрос Q, требующий ответа «да» либо «нет», заданный богу правды или богу лжи:

Если я с тебя Q, ты ответишь «ja»?

результат будет «ja», если верный ответ на вопрос Q это «да» и «da», если верный ответ «нет». Для доказательства этого можно рассмотреть восемь возможных вариантов, предложенных самим Булосом:

Предположим, что «ja» обозначает «да», а «da» обозначает «нет»: Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «да». Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «нет». Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «da». То есть правильный ответ на вопрос «ja», который обозначает «да». Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «ja». То есть правильный ответ на вопрос «da», который обозначает «нет». Предположим, что «ja» обозначает «нет», а «da» обозначает «да»: Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «да». Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «нет». Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «ja». Но, так как он лжёт, верный ответ на вопрос Q — «da», что означает «да». Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «da». Но, так как он лжёт, верный ответ на вопрос Q — «ja», что означает «нет».

Используя этот факт можно задавать вопросы:[3]

Спросим бога B: «Если я с у тебя „Бог А — бог случая?“, ты ответишь „ja“?». Если бог B отвечает «ja», значит, либо он бог случая (и отвечает случайным образом), либо он не бог случая, а на самом деле бог A — бог случая. В любом варианте, бог C — это не бог случая. Если же B отвечает «da», то либо он бог случая (и отвечает случайным образом), либо B не бог случая, что означает, что бог А — тоже не бог случая. В любом варианте, бог A — это не бог случая. Спросим у бога, который не является богом случая (по результатам предыдущего вопроса, либо A, либо C): «Если я с у тебя: „ты бог правды?“, ты ответишь „ja“?». Поскольку он не бог случая, ответ  «ja» обозначает, что он бог правды, а ответ «da» обозначает, что он бог лжи. Спросим у этого же бога «Если я у тебя с Бог B — бог случая?“, ответишь ли ты „ja“?». Если ответ «ja» — бог B является богом случая, если ответ «da», то бог, с которым ещё не говорили, является богом случая.

Оставшийся бог определяется методом исключения.

 
4,4(69 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ