вот
Пошаговое объяснение: y'' + 10y' + 24y = 6e^(-6x) + 168x + 118
Неоднородное уравнение 2 порядка.
y(x) = y0 + y* (решение однородного + частное решение неоднородного).
Решаем однородное уравнение
y'' + 10y' + 24y = 0
Характеристическое уравнение
k^2 + 10k + 24 = 0
(k + 4)(k + 6) = 0
y0 = C1*e^(-4x) + C2*e^(-6x)
Находим частное решение неоднородного уравнения
-6 - один из корней характеристического уравнения, поэтому
y* = A*x*e^(-6x) + B1*x + B2
y* ' = A*e^(-6x) - 6Ax*e^(-6x) + B1
y* '' = -6A*e^(-6x) - 6A*e^(-6x) + 36A*x*e^(-6x)
Подставляем в уравнение
-6A*e^(-6x) - 6A*e^(-6x) + 36A*x*e^(-6x) + 10A*e^(-6x) - 60Ax*e^(-6x) + 10B1 + 24A*x*e^(-6x) + 24B1*x + 24B2 = 6e^(-6x) + 168x + 118
(-6A - 6A + 36A*x + 10A - 60A*x + 24A*x)*e^(-6x) + 24B1*x + (10B1 + 24B2) =
= 6e^(-6x) + 168x + 118
Приводим подобные в скобке при e^(-6x)
-12A + 10A + 60A*x - 60A*x = -2A
Подставляем
-2A*e^(-6x) + 24B1*x + (10B1 + 24B2) = 6e^(-6x) + 168x + 118
Коэффициенты при одинаковых множителях должны быть равны
{ -2A = 6
{ 24B1 = 168
{ 10B1 + 24B2 = 118
Решаем
{ A = -3
{ B1 = 7
{ 70 + 24B2 = 118; B2 = (118 - 70)/24 = 48/24 = 2
y* = -3x*e^(-6x) + 7x + 2
ответ: y = y0 + y* = C1*e^(-4x) + C2*e^(-6x) - 3x*e^(-6x) + 7x + 2
1)n=3
2)n=24
3)n=7
Объяснение:
подставь в знаменатель вместо n, эти значения:
1)6/3=2 натуральное число
2)6/24= сокращается на 6, получаем 1/4
3)6/7 - не сократимая дробь
Ред. "Объясните, как нашли числа?"
ответ: Ты можешь где n, подставить любое число кроме 0, потому что на ноль делить нельзя!
Подробное объяснение:
-В основном, здесь теория и применение знаний на практике.
1) Натуральные числа - это числа начиная с 1 -ого при счете предметов. Натуральное число не может быть дробью, у тебя при делении не должна получаться дробь.
Натуральные числа - это числа начиная с 1 -ого при счете предметов. Натуральное число не может быть дробью, у тебя при делении не должна получаться дробь.Поэтому ты подбираешь такое значение n, чтобы получилось натуральное число (без дроби)
Это число n при подборе может быть:
6/1=6
6/2=3
6/3=2
2) Сократимая дробь, эта та дробь, где мы можем сократить любое число с числителем и знаменателем на общий множитель, чтобы упростить его вид. Но из этого не получится натуральное число (останется в виде дроби)
Это число n при подборе может быть:
-6/12= сокращаем на 6 и получаем 1/2
Почему на 6 сокращается?
Почему на 6 сокращается?Разложим общие множители числителя и знаменателя. Как мы можем разложить число 6? 3*2 или 6*1. Мы возьмём 6*1 т.к мы знаем что в 12 может быть один из множителей 6 (2*6=12)
6*1/6*2 мы видим, что 6 и 6 присутствует и в числителе 6 умножим на 1 (сверху) и взнаменателе 6 умножим на 2 (внизу).
6*1/6*2 мы видим, что 6 и 6 присутствует и в числителе 6 умножим на 1 (сверху) и взнаменателе 6 умножим на 2 (внизу).Там 6 и там 6, значит мы можем сократить, сокращаем и получаем 1/2.
-Ещё примеры подбора числа n для сокращений:
точно так же мы раскладываем на множители и сокращаем на один из одинаковых общих множителей в числителе и знаменателе:
6/24= сокращаем на 6 и получаем 1/4
6/36= сокращаем на 6 и получаем 1/6
3) Несократимая дробь, эта та дробь, где мы не можем сократить числитель и знаменатель на общий множитель, потому что их не подобрать ( не раскладываются на общие множители, например 7 мы не можем разложить на натуральные, это число нечётное и делится на само себя).
Несократимая дробь, эта та дробь, где мы не можем сократить числитель и знаменатель на общий множитель, потому что их не подобрать ( не раскладываются на общие множители, например 7 мы не можем разложить на натуральные, это число нечётное и делится на само себя).Мы должны подобрать такое число, чтобы один из множителей не совпадал с одним из множителей как у 6. Ведь 2*3=6 и 6*1=6
-Лучший и понятный из всех примеров, это 6/7 - эта дробь не сократимая, мы не можем разложить 7 на множители кроме 7*1 а 6 кроме 2*3 или 6*1, поэтому эта дробь не сократимая.
b=a-12
c=a+15
a+(a-12)+(a+15)=126
a+a-12+a+15=126
3a=126-3
3a=123
a=41
первое число =41
второе число 41-12=29
третье число 41+15=56