4 + 4√3 см.
Пошаговое объяснение:
Начертим рисунок к задаче:
А - точка, отстоящая от плоскости на расстоянии 4 см,
АН - перпендикуляр из точки А на плоскость, его длина 4 см,
АВ - наклонная из точки А, образующая угол 30° с плоскостью,
АС - наклонная из точки А, образующая угол 45° с плоскостью,
угол между наклонными АВ и АС прямой.
Так как АН перпендикуляр, то треугольники АНВ и АНС прямоугольные.
В треугольнике АНС один из острых углов равен 45°, следовательно два его катета АН и НС равны между собой, таким образом НС = 4 см.
tg ABH = АН/HВ;
HB = AH/tg ABH = 4/tg 30° = 4/(1/√3) = 4√3 (см).
Расстояние между концами наклонных будет равно сумме отрезков ВН и НС:
ВС = ВН + НС = 4 + 4√3 (см).
ответ: 4 + 4√3 см.
ответ:
пусть о - центр вписанной окружности, n - точка касания окр со стороной ac, k - точка касания окр со стороной bc, m - точка касания окружности со стороной ab, тогда mb = x, am =2x (2/1 от a), значит ab =3x. по утверждению со стр.167 учебника - отрезки касательных к окружности , проведенные из одной точки равны и составляют ровные углы с прямой проходящей через эту точку и центр окружности - am =an, an =2x и bk =x. аналог. ck =cn =15-2x.(т.к. ac=15, a an =2x).периметр будет ab+bc+ac=3x+(x+15-2x)+(2x+15-2x)=42.решив уравнение имеем x=6. 3н. ab=18 см,ac=15 см, bc=9см
пошаговое объяснение:
Б0 ( Х - 3) * 5
в) 210 : 5Х